CS2100-CP Fractional-N Clock Multiplier Features General Description Clock Multiplier / Jitter Reduction The CS2100-CP is an extremely versatile system clocking device that utilizes a programmable phase lock loop. The CS2100-CP is based on a hybrid analog-digital PLL architecture comprised of a unique combination of a Delta-Sigma Fractional-N Frequency Synthesizer and a Digital PLL.
CS2100-CP TABLE OF CONTENTS 1. PIN DESCRIPTION ................................................................................................................................. 5 2. TYPICAL CONNECTION DIAGRAM ..................................................................................................... 6 3. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 7 RECOMMENDED OPERATING CONDITIONS .......................................
CS2100-CP 8.4.2 Enable Device Configuration Registers 2 (EnDevCfg2) ....................................................... 28 8.5 Ratio (Address 06h - 09h) .............................................................................................................. 28 8.6 Function Configuration 1 (Address 16h) ........................................................................................ 29 8.6.1 Clock Skip Enable (ClkSkipEn) ......................................................................
CS2100-CP 1. PIN DESCRIPTION VD 1 10 SDA/CDIN GND 2 9 SCL/CCLK CLK_OUT 3 8 AD0/CS AUX_OUT 4 7 XTI/REF_CLK CLK_IN 5 6 XTO Pin Name # Pin Description VD 1 Digital Power (Input) - Positive power supply for the digital and analog sections. GND 2 Ground (Input) - Ground reference. CLK_OUT 3 PLL Clock Output (Output) - PLL clock output.
CS2100-CP 2. TYPICAL CONNECTION DIAGRAM Note1 Notes: 1. Resistors required for I2C operation. 0.1 µF 2 kΩ 1 µF +3.3 V 2 kΩ VD SCL/CCLK System MicroController SDA/CDIN AD0/CS CS2100-CP Frequency Reference CLK_IN 1 or 2 XTI/REF_CLK CLK_OUT To circuitry which requires a low-jitter clock AUX_OUT To other circuitry or Microcontroller XTO GND Low-Jitter Timing Reference REF_CLK 1 N.C. x XTO or Crystal XTI 2 XTO 40 pF 40 pF Figure 1.
CS2100-CP 3. CHARACTERISTICS AND SPECIFICATIONS RECOMMENDED OPERATING CONDITIONS GND = 0 V; all voltages with respect to ground. (Note 1) Parameters DC Power Supply Symbol Min Typ Max Units VD 3.1 3.3 3.5 V TAC TAD -10 -40 - +70 +85 °C °C Ambient Operating Temperature (Power Applied) Commercial Grade Automotive Grade Notes: 1. Device functionality is not guaranteed or implied outside of these limits. Operation outside of these limits may adversely affect device reliability.
CS2100-CP AC ELECTRICAL CHARACTERISTICS Test Conditions (unless otherwise specified): VD = 3.1 V to 3.5 V; TA = -10°C to +70°C (Commercial Grade); TA = -40°C to +85°C (Automotive Grade); CL = 15 pF. Parameters Crystal Frequency Fundamental Mode XTAL Symbol Conditions Min Typ Max Units fXTAL RefClkDiv[1:0] = 10 RefClkDiv[1:0] = 01 RefClkDiv[1:0] = 00 RefClkDiv[1:0] = 10 RefClkDiv[1:0] = 01 RefClkDiv[1:0] = 00 8 16 32 - 18.75 37.5 50 MHz MHz MHz 8 16 32 - 18.75 37.
CS2100-CP PLL PERFORMANCE PLOTS Test Conditions (unless otherwise specified): VD = 3.3 V; TA = 25 °C; CL = 15 pF; fCLK_OUT = 12.288 MHz; fCLK_IN = 12.288 MHz; Sample size = 10,000 points; Base Band Jitter (100 Hz to 40 kHz); AuxOutSrc[1:0] = 11. 10,000 10 1 Hz Bandwidth 128 Hz Bandwidth 1 Hz Bandwidth 128 Hz Bandwidth 0 -10 Jitter Transfer (dB) Max Input Jitter Level (usec) 1,000 100 10 -20 -30 -40 1 -50 0.
CS2100-CP CONTROL PORT SWITCHING CHARACTERISTICS- I²C FORMAT Inputs: Logic 0 = GND; Logic 1 = VD; CL = 20 pF. Parameter Symbol Min Max Unit SCL Clock Frequency fscl - 100 kHz Bus Free-Time Between Transmissions tbuf 4.7 - µs Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs Clock Low Time tlow 4.7 - µs Clock High Time thigh 4.0 - µs Setup Time for Repeated Start Condition tsust 4.
CS2100-CP CONTROL PORT SWITCHING CHARACTERISTICS - SPI FORMAT Inputs: Logic 0 = GND; Logic 1 = VD; CL = 20 pF. Parameter Symbol Min Max Unit fccllk - 6 MHz tspi 500 - ns CS High Time Between Transmissions tcsh 1.
CS2100-CP 4. ARCHITECTURE OVERVIEW 4.1 Delta-Sigma Fractional-N Frequency Synthesizer The core of the CS2100 is a Delta-Sigma Fractional-N Frequency Synthesizer which has very high-resolution for Input/Output clock ratios, low phase noise, very wide range of output frequencies and the ability to quickly tune to a new frequency. In very simplistic terms, the Fractional-N Frequency Synthesizer multiplies the Timing Reference Clock by the value of N to generate the PLL output clock.
CS2100-CP Delta-Sigma Fractional-N Frequency Synthesizer Timing Reference Clock Phase Comparator Internal Loop Filter Voltage Controlled Oscillator PLL Output Fractional-N Divider Delta-Sigma Modulator Digital PLL and Fractional-N Logic N Digital Filter Frequency Reference Clock Frequency Comparator for Frac-N Generation Output to Input Ratio for Hybrid mode Figure 8.
CS2100-CP 5. APPLICATIONS 5.1 Timing Reference Clock Input The low jitter timing reference clock (RefClk) can be provided by either an external reference clock or an external crystal in conjunction with the internal oscillator. In order to maintain a stable and low-jitter PLL output the timing reference clock must also be stable and low-jitter; the quality of the timing reference clock directly affects the performance of the PLL and hence the quality of the PLL output. 5.1.
CS2100-CP 5.1.2 Crystal Connections (XTI and XTO) An external crystal may be used to generate RefClk. To accomplish this, a 20 pF fundamental mode parallel resonant crystal must be connected between the XTI and XTO pins as shown in Figure 11. As shown, nothing other than the crystal and its load capacitors should be connected to XTI and XTO. Please refer to the “AC Electrical Characteristics” on page 7 for the allowed crystal frequency range. XTI 40 pF XTO 40 pF Figure 11.
CS2100-CP Regardless of the setting of the ClkSkipEn bit the PLL output will continue for 223 SysClk cycles (466 ms to 1048 ms) after CLK_IN is removed (see Figure 12). This is true as long as CLK_IN does not glitch or have an effective change in period as the clock source is removed, otherwise the PLL will interpret this as a change in frequency causing clock skipping and the 223 SysClk cycle time-out to be bypassed and the PLL to immediately unlock.
CS2100-CP If CLK_IN is removed and then re-applied within tCS, the ClkSkipEn bit determines whether PLL_OUT continues while the PLL re-acquires lock (see Figure 14). When ClkSkipEn is disabled and CLK_IN is removed the PLL output will continue until CLK_IN is re-applied at which point the PLL will go unlocked only for the time it takes to acquire lock; the PLL_OUT state will be determined by the ClkOutUnl bit during this time.
CS2100-CP Typically, applications in which the PLL_OUT signal creates a new clock domain from which all other system clocks and associated data are derived will benefit from the maximum jitter and wander rejection of the lowest PLL bandwidth setting. See Figure 15. PLL BW = 1 Hz CLK_IN Wander > 1 Hz PLL_OUT Wander and Jitter > 1 Hz Rejected MCLK Jitter MCLK Subclocks generated from new clock domain. or LRCK LRCK SCLK SCLK D0 SDATA D1 SDATA D0 D1 Figure 15.
CS2100-CP in either a high resolution (12.20) or high multiplication (20.12) format selectable by the LFRatioCfg bit, with 20.12 being the default. The RUD for high resolution (12.20) format is encoded with 12 MSBs representing the integer binary portion with the remaining 20 LSBs representing the fractional binary portion. The maximum multiplication factor is approximately 4096 with a resolution of 0.954 PPM in this configuration. See “Calculating the User Defined Ratio” on page 30 for more information.
CS2100-CP 5.3.3 Effective Ratio (REFF) The Effective Ratio (REFF) is an internal calculation comprised of RUD and the appropriate modifiers, as previously described. REFF is calculated as follows: REFF = RUD • RMOD To simplify operation the device handles some of the ratio calculation functions automatically (such as when the internal timing reference clock divider is set). For this reason, the Effective Ratio does not need to be altered to account for internal dividers.
CS2100-CP 5.4 PLL Clock Output The PLL clock output pin (CLK_OUT) provides a buffered version of the output of the frequency synthesizer. The driver can be set to high-impedance with the ClkOutDis bit. The output from the PLL automatically drives a static low condition while the PLL is un-locked (when the clock may be unreliable). This feature can be disabled by setting the ClkOutUnl bit, however the state CLK_OUT may then be unreliable during an unlock condition.
CS2100-CP 5.6 Clock Output Stability Considerations 5.6.1 Output Switching CS2100 is designed such that re-configuration of the clock routing functions do not result in a partial clock period on any of the active outputs (CLK_OUT and/or AUX_OUT). In particular, enabling or disabling an output, changing the auxiliary output source between REF_CLK and CLK_OUT, and the automatic disabling of the output(s) during unlock will not cause a runt or partial clock period.
CS2100-CP The control port operates with either the SPI or I²C interface, with the CS2100 acting as a slave device. SPI Mode is selected if there is a high-to-low transition on the AD0/CS pin after power-up. I²C Mode is selected by connecting the AD0/CS pin through a resistor to VD or GND, thereby permanently selecting the desired AD0 bit address state. In both modes the EnDevCfg1 and EnDevCfg2 bits must be set to 1 for normal operation.
CS2100-CP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 24 25 26 27 28 SCL CHIP ADDRESS (WRITE) 1 SDA 0 0 1 1 1 AD0 MAP BYTE 0 INCR 6 5 4 3 2 1 0 ACK 7 6 DATA +n DATA +1 DATA 1 0 ACK 7 6 1 0 7 6 1 0 ACK ACK STOP START Figure 21.
CS2100-CP 6.3 Memory Address Pointer The Memory Address Pointer (MAP) byte comes after the address byte and selects the register to be read or written. Refer to the pseudocode above for implementation details. 6.3.1 Map Auto Increment The device has MAP auto increment capability enabled by the INCR bit (the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and SPI writes.
CS2100-CP 8. REGISTER DESCRIPTIONS In I²C Mode all registers are read/write unless otherwise stated. In SPI mode all registers are write only. All “Reserved” registers must maintain their default state to ensure proper functional operation. The default state of each bit after a power-up sequence or reset is indicated by the shaded row in the bit decode table and in the “Register Quick Reference” on page 24.
CS2100-CP 8.2.3 PLL Clock Output Disable (ClkOutDis) This bit controls the output driver for the CLK_OUT pin. 8.3 ClkOutDis Output Driver State 0 CLK_OUT output driver enabled. 1 CLK_OUT output driver set to high-impedance. Application: “PLL Clock Output” on page 20 Device Configuration 1 (Address 03h) 7 RModSel2 8.3.
CS2100-CP 8.3.3 Enable Device Configuration Registers 1 (EnDevCfg1) This bit, in conjunction with EnDevCfg2, configures the device for control port mode. These EnDevCfg bits can be set in any order and at any time during the control port access sequence, however they must both be set before normal operation can occur. EnDevCfg1 Register State 0 Disabled. 1 Enabled. Application: “SPI / I²C Control Port” on page 21 Note: EnDevCfg2 must also be set to enable control port mode.
CS2100-CP 8.6 Function Configuration 1 (Address 16h) 7 ClkSkipEn 8.6.1 6 AuxLockCfg 5 Reserved 4 RefClkDiv1 3 RefClkDiv0 2 Reserved 1 Reserved 0 Reserved Clock Skip Enable (ClkSkipEn) This bit enables clock skipping mode for the PLL and allows the PLL to maintain lock even when the CLK_IN has missing pulses. ClkSkipEn PLL Clock Skipping Mode 0 Disabled. 1 Enabled. Application: “CLK_IN Skipping Mode” on page 14 Note: 8.6.
CS2100-CP 8.7 Function Configuration 2 (Address 17h) 7 Reserved 8.7.1 6 Reserved 5 Reserved 4 ClkOutUnl 3 LFRatioCfg 2 Reserved 1 Reserved 0 Reserved Enable PLL Clock Output on Unlock (ClkOutUnl) Defines the state of the PLL output during the PLL unlock condition. 8.7.2 ClkOutUnl Clock Output Enable Status 0 Clock outputs are driven ‘low’ when PLL is unlocked. 1 Clock outputs are always enabled (results in unpredictable output when PLL is unlocked).
CS2100-CP 9. CALCULATING THE USER DEFINED RATIO Note: The software for use with the evaluation kit has built in tools to aid in calculating and converting the User Defined Ratio. This section is for those who are not interested in the software or who are developing their systems without the aid of the evaluation kit. Most calculators do not interpret the fixed point binary representation which the CS2100 uses to define the output to input clock ratio (see Section 5.3.
CS2100-CP 10.PACKAGE DIMENSIONS 10L MSOP (3 mm BODY) PACKAGE DRAWING (Note 1) N D E11 c E A2 A ∝ e b A1 SIDE VIEW 1 2 3 END VIEW L SEATING PLANE L1 TOP VIEW DIM MIN INCHES NOM A A1 A2 b c D E E1 e L L1 -0 0.0295 0.0059 0.0031 ----0.0157 -- -----0.1181 BSC 0.1929 BSC 0.1181 BSC 0.0197 BSC 0.0236 0.0374 REF MAX 0.0433 0.0059 0.0374 0.0118 0.0091 ----0.0315 -- MIN MILLIMETERS NOM NOTE MAX -0 0.75 0.15 0.08 ----0.40 -- -----3.00 BSC 4.90 BSC 3.00 BSC 0.50 BSC 0.60 0.95 REF 1.10 0.
CS2100-CP 11.