GRAPH35+ E (Version 2.10) Logiciel Mode d’emploi
8-28
k Utilisation de graphes de distributions dans un programme
(Non disponible sur la GRAPH25+ E)
Pour tracer des graphes de distributions dans un programme on utilise des commandes
spéciales.
• Pour tracer le graphe d’une distribution normale cumulative
1
DrawDistNorm <Lower>, <Upper> [,
σ
, ]
Moyenne de la population*
1
Écart-type de la population*
1
Limite supérieure des données
Limite inférieure des données
1
4151
*
1
Ce terme peut être omis. En cas d’omission le calcul se fait avec = 1 et = 0.
• L’exécution de DrawDistNorm effectue le calcul ci-dessus
selon les conditions spécifiées et trace le graphe.
La région ZLow <
x < ZUp du graphe est remplie à la
même occasion.
• Simultanément, les valeurs des résultats du calcul de
p, ZLow et ZUp sont affectées aux
variables p, ZLow et ZUp respectivement et p est affectée à Ans.
• Pour tracer le graphe d’une distribution t de Student cumulative
1
DrawDistT <Lower>, <Upper>, <df>
Degrés de liberté
Limite supérieure des données
Limite inférieure des données
1
4152
• L’exécution de DrawDistT effectue le calcul ci-dessus selon les conditions spécifiées et trace
le graphe. La région Lower <
x < Upper du graphe est remplie à la même occasion.
• Simultanément, la valeur du résultat du calcul de
p et les valeurs d’entrée inférieure et
supérieure sont affectées aux variables p, tLow et tUp respectivement et p est affectée à
Ans.
πσ
2
p =
dx
1
e
–
2
2
σ
(x – μ)
2
μ
Upper
Lower
∫
ZUp =
σ
Upper –
μ
ZLow =
σ
Lower –
μ
πσ
2
p =
dx
1
e
–
2
2
σ
(x – μ)
2
μ
Upper
Lower
∫
ZUp =
σ
Upper –
μ
ZLow =
σ
Lower –
μ
tLow = Lower tUp = Upper
Γ
2
df + 1
df
x
2
1 +
df + 1
2
p = ×
–
Γ
2
df
dx
df
×
π
Upper
Lower
∫
tLow = Lower tUp = Upper
Γ
2
df + 1
df
x
2
1 +
df + 1
2
p = ×
–
Γ
2
df
dx
df
×
π
Upper
Lower
∫