User Manual
k
  
πσ
2
p(x) = 
1
e
–
2 
2
σ
(x – μ)
2
μ
(
> 0)
σ
p =  p(x)dx 
Upper
Lower
∫
t 
p(x) = 
×
Γ
Γ
 × df
π
–
 df+1
2
2
df
2
df + 1
df
x
2
1 +
χ 
p(x) = 
×
(x  0)
Γ
1
2
df
df
2
×
x      
2
1
df
2
–1
x
2
–
 × e
F 
ndf
2
x
ddf
ndf
ndf
2
–1
ddf
ndf × x
1 +
ndf + ddf
2
p(x) = 
–
Γ
2
ndf + ddf
Γ
2
ndf
 × Γ
2
ddf
(x  0)
p =  p(x)dx 
Upper
–∞
∫
p =  p(x)dx 
Lower
∞
∫
p =  p(x)dx 
Upper
Lower
∫
      
t 
p =  p(x)dx 
Lower
∞
∫
χ 
F 










