إصدار السوفتوير 3.10 دليل المستخدم
8-46
ﺔﻴﻗﻮﻓ ﺔﺳﺪﻨﻫ ﻊﻳﺯﻮﺗ •
.ﺓﺩﺪﶈﺍ ﺕﺎﻧﺎﻴﺒﻠﻟ (p ﺔﻤﻴﻗ) ﺔﻴﻗﻮﻔﻟﺍ ﺔﺳﺪﻨﻬﻟﺍ ﻝﺎﻤﺘﺣﺍ ﺪﻴﻌﻳ :HypergeoPD(
HypergeoPD( x , n , M, N[)] :ﺐﻴﻛﺮﺘﻟﺍ
ListAns) Ans ﻭ p ﺕﺍﺮﻴﻐﺘﻤﻠﻟ p ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺔﺠﻴﺘﻧ ﲔﻴﻌﺗ ﻢﺘﻳ ﻭ .x ﻝ ﺔﻤﺋﺎﻗ ﻭﺃ ﺓﺪﺣﺍﻭ ﺔﻤﻴﻗ ﺪﻳﺪﲢ ﻦﻜﳝ •
.(ﺔﻤﺋﺎﻗ x ﻥﻮﻜﺗ ﺎﻣﺪﻨﻋ
.ﺓﺩﺪﶈﺍ ﺕﺎﻧﺎﻴﺒﻠﻟ (p ﺔﻤﻴﻗ) ﺔﻴﻗﻮﻔﻟﺍ ﺔﺳﺪﻨﻬﻠﻟ ﻲﻤﻛﺍﺮﺗ ﻊﻳﺯﻮﺘﻟﺍ ﺪﻴﻌﻳ :HypergeoCD(
HypergeoCD([Lower,] Upper, n, M, N[)] :ﺐﻴﻛﺮﺘﻟﺍ
ﻭ p ﺕﺍﺮﻴﻐﺘﻤﻠﻟ p ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺔﺠﻴﺘﻧ ﲔﻴﻌﺗ ﻢﺘﻳ ﻭ .ﻰﻠﻋﻷ ﻭ ﻞﻔﺳﻷ ﺔﻤﺋﺎﻗ ﻭﺃ ﺓﺪﺣﺍﻭ ﺔﻤﻴﻗ ﺪﻳﺪﲢ ﻦﻜﳝ •
.
(ListAns ﻭﺃ) Ans
.ﺓﺩﺪﶈﺍ ﺔﻤﻴﻘﻠﻟ ﺔﻴﻗﻮﻔﻟﺍ ﺔﺳﺪﻨﻬﻠﻟ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻊﻳﺯﻮﺘﻟﺍ ﺱﻮﻜﻌﻣ ﺪﻴﻌﻳ :InvHypergeoCD(
InvHypergeoCD( p , n , M, N[)] :ﺐﻴﻛﺮﺘﻟﺍ
ﻭ x
Inv ﺕﺍﺮﻴﻐﺘﻤﻠﻟ ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻠﻟ ﺔﺠﻴﺘﻨﻛ X ﺔﻤﻴﻘﻟﺍ ﲔﻴﻌﺗ ﻢﺘﻳ ﻭ .p ﻢﻴﻘﺑ ﺔﻤﺋﺎﻗ ﻭﺃ ﺓﺪﺣﺍﻭ ﺔﻤﻴﻗ ﺪﻳﺪﲢ ﻦﻜﳝ •
.(ﺔﻤﺋﺎﻗ p ﻥﻮﻜﺗ ﺎﻣﺪﻨﻋ
ListAns) Ans
ﺞﻣﺎﻧﺮﺒﻟﺍ ﻲﻓ ﺮﻣﺃ ﺬﻴﻔﻨﺘﻟ TEST ﺮﻣﻷﺍ ﻡﺍﺪﺨﺘﺳﺍ k
.ﺮﻣﻸﻟ "μ condition" ﺔﺠﳊ ﺕﺍﺪﻳﺪﺤﺘﻟﺍ ﺕﺎﻗﺎﻄﻧ ﻮﻫ ﻲﻠﻳ ﺎﻣ ﻭ •
"
<" ﻭﺃ –1 ﺪﻨﻋ μ < μ
0
"≠" ﻭﺃ 0 ﺪﻨﻋ μ ≠ μ
0
"
>" ﻭﺃ 1 ﺪﻨﻋ μ > μ
0
."
β &
ρ
condition" ﻭ "
ρ
condition" ﻝﺍ ﺪﻳﺪﲢ ﻕﺮﻄﻟ
ﹰ
ﺎﻀﻳﺃ ﻖﺒﺳ ﺎﻣ ﺐﻠﻄﻳ
ﻭ ﺕﻼﺧﺪﳌﺍ ﺕﺎﺤﻠﻄﺼﻣ" ﻭ (
6-33 ﺔﺤﻔﺻ) "ﺹﻮﺼﻨﻟﺍ" ﺮﻈﻧﺍ ،ﻞﻴﺼﻔﺘﻟﺎﺑ ﺎﻨﻫ ﻂﻐﺗ ﻢﻟ ﻲﺘﻟﺍ ﺞﺠﳊﺍ ﻦﻋ ﺕﺍﺭﺎﺴﻔﺘﺳﻼﻟ •
.(
6-66 ﺔﺤﻔﺻ) "ﻊﻳﺯﻮﺗ ﻭ ،ﺔﻘﺜﻟﺍ ﻞﺻﺎﻓ ﻭ ،ﺕﺎﺟﺮﺍ
. (
6-69 ﺔﺤﻔﺻ) "ﺔﻴﺋﺎﺼﺣﻹﺍ ﺔﻐﻴﺼﻟﺍ" ﺮﻈﻧﺍ ،ﺮﻣﺃ ﻞﻜﻟ ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺔﻐﻴﺼﻟ •
Z ﺭﺎﺒﺘﺧﺍ •
.ﺓﺪﺣﺍﻭ ﺔﻨﻴﻌﻟ Z ﺭﺎﺒﺘﺧﺍ ﺏﺎﺴﺤﺑ : OneSample Z Test
OneSample Z Test " μ condition", μ
0
,
σ
, o, n :ﺐﻴﻛﺮﺘﻟﺍ
.
4 ﻰﻟﺇ 1 ﻦﻣ ListAns ﺮﺻﺎﻨﻋ ﻭ z, p, o, n ﺕﺍﺮﻴﻐﺘﳌ ﻲﻟﺍﻮﺘﻟﺍ ﻰﻠﻋ z, p, o, n ﲔﻴﻌﺗ ﻢﺘﻳ :ﺕﺎﺟﺮﺨﻤﻟﺍ ﻢﻴﻗ
OneSample Z Test " μ condition", μ
0
,
σ
, List[, Freq] :ﺐﻴﻛﺮﺘﻟﺍ
1 ﻦﻣ ListAns ﺮﺻﺎﻨﻋ ﻭ z, p , o, s
x
, n ﺕﺍﺮﻴﻐﺘﳌ ﻲﻟﺍﻮﺘﻟﺍ ﻰﻠﻋ z, p , o, s
x
, n ﲔﻴﻌﺗ ﻢﺘﻳ :ﺕﺎﺟﺮﺨﻤﻟﺍ ﻢﻴﻗ
.
5 ﻰﻟﺇ