إصدار السوفتوير 2.02 دليل المستخدم

6-70
ﺔﻘﺜﻟﺍ ﻞﺻﺎﻓ k
ﺔﻘﺜﻟﺍ ﻞﺻﺎﻓ
ﺔﻘﺜﻟﺍ ﻞﺻﺎﻔﻟ ﻰﻧﺩﻷﺍ ﺪﳊﺍ : Lower
ﺔﻘﺜﻟﺍ ﻞﺻﺎﻔﻟ ﻰﻠﻋﻷﺍ ﺪﳊﺍ : Upper
ﺔﻨﻴﻌﻟ Z ﻞﺻﺎﻓ-1
Lower, Upper = o + Z( /2) · σ/
'
n
α
ﲔﺘﻨﻴﻌﻟ Z ﻞﺻﺎﻓ-
2
Lower, Upper = (o
1
o
2
) + Z( /2) σ /n
1
+ σ /n
2
2
1
2
2
α
ﺔﺒﺴﻨﻟ Z ﻞﺻﺎﻓ-
1
Lower, Upper = x/n + Z( /2) 1/n · (x/n · (1 – x/n))
α
ﲔﺘﻨﻴﻌﻟ Z ﻞﺻﺎﻓ-
2
Lower, Upper = (x
1
/n
1
x
2
/n
2
)
+ Z( /2) (x
1
/n
1
· (1 x
1
/n
1
))/n
1
+ (x
2
/n
2
· (1 x
2
/n
2
))/n
2
α
ﺔﻨﻴﻌﻟ t ﻞﺻﺎﻓ-
1
Lower, Upper = o + t
n−1
( /2)
· s
x
/'n
α
(ﺔﻌﻤﺠﻣ) ﲔﺘﻨﻴﻌﻟ t ﻞﺻﺎﻓ-
2
Lower, Upper = (o
1
o
2
) + t
n
1
+n
2
−2
( /2) s
p
2
(1/n
1
+ 1/n
2
)
s
p
= ((n
1
– 1)s
x
1
2
+ (n
2
– 1)s
x
2
2
)/(n
1
+ n
2
– 2)
α
ﲔﺘﻨﻴﻌﻟ t ﻞﺻﺎﻓ-
2
(ﺔﻌﻤﺠﻣ ﺮﻴﻏ)
Lower, Upper = (o
1
o
2
) + t
df
( /2) s
x
1
2
/n
1
+ s
x
2
2
/n
2
df = 1/(C
2
/(n
1
– 1) + (1 – C)
2
/(n
2
– 1))
α
C = (s
x
1
2
/n
1
)/(s
x
1
2
/n
1
+ s
x
2
2
/n
2
)
(
0 % C-Level < 1) ﺔﻘﺜﻟﺍ ﻯﻮﺘﺴﻣ : C-Level 1 − [C-Level] =
α
ﻡﺎﻫ ﻯﻮﺘﺴﻣ :
α
ﻱﺭﺎﻴﻌﳌﺍ ﻲﻌﻴﺒﻄﻟﺍ ﻊﻳﺯﻮﺘﻠﻟ
α
/2 ﻰﻠﻋﺍ ﺔﻄﻘﻧ :Z (
α
/2)
df ﺔﻳﺮﺣ ﺕﺎﺟﺭﺩ ﻊﻣ t ﻊﻳﺯﻮﺘﻟ
α
/2 ﻰﻠﻋﺍ ﺔﻄﻘﻧ :t
df
(
α
/2)