User Manual

2-29
I denna definition, byts infinitesimal ut mot en tillräckligt liten A
x , med ett värde inom området
av
f
'
( a ) beräknas som:
Exempel Bestämma derivatan vid x = 3 för funktionen y = x
3
+ 4 x
2
+ x – 6
Mata in funktionen f ( x ).
AK4(CALC) 2(d/d
x ) vMde+evx+v-ge
Mata in den punkt x = a för vilken derivatan ska beräknas.
dw
Använda beräkningar av första derivatan i en graffunktion
Du kan utelämna inmatningen av värdet i syntaxen på sida 2-28 genom att använda följande
format för grafen för första derivatan: Y2 = d/d x (Y1). Om du gör det används värdet på
variabeln X istället för värdet a.
Försiktighetsåtgärder vid beräkning av första derivatan
I funktionen f ( x ) kan endast X användas som variabel i uttryck. Övriga variabler
(A till Z förutom X,
r , ) tolkas som konstanter, och det värde som variabeln tilldelats för
tillfället har använts under hela beräkningen.
Om du trycker på A när en första derivata beräknas (när markören inte visas på displayen)
avbryts beräkningen.
Dålig noggrannhet och fel kan bero på följande:
- diskontinuiteter i
x -värden
- extrema förändringar i
x -värden
- införande av en lokal maximi- eller minimipunkt i
x -värden
- införande av inflexionspunkt i
x -värden
- införande av ej urskiljningsbara punkter i
x -värden
- resultatet för första derivatan närmar sig noll
Använd alltid radianer (läget Rad) som vinkelenhet när du beräknar trigonometriska första
derivat.
Det går inte att använda en första derivata, andra derivata, integraler, Σ , maximi-/
minimivärden, Solve- eller RndFix-beräkningsuttryck i en beräkningsterm för första derivatan.
f
(
a
+
A
x
)–
f
(
a
)
f
(
a
)
–––––––––––––
A
x
'