ZU fx-991ZA PLUS II (NATURAL-V.P.A.M.) Isiqondiso kumsebenzisi Iwebhsayithi yakwa CASIO yezemfundo umhlaba wonke https://edu.casio.com Amamanuwali ayatholakala ngezilimi ezihlukahlukene ku- https://world.casio.
Okuqukethwe Ngaphambi Kokusebenzisa Umshini Wokubala....................4 Mayelana Nale Manuwali.........................................................................4 Ukuqala Ukusebenzisa Isibali.................................................................. 4 Izinyathelo Zokuphepha...........................................................................5 Izexwayiso Zokuphepha..................................................................................5 Izexwayiso Zokusingatha.................
Okuguquguqukayo (A, B, C, D, E, F, M, X, Y)...............................................29 Inkumbulo Ezimele (M)................................................................................. 30 Ukucisha Okuqukethwe Yizo Zonke Izinkumbulo......................................... 30 Izibalo Zamafankshini............................................................ 31 I-Pi (π), Isisekeli se-Logarithm Yemvelo e.............................................. 31 Imisebenzi ye-Trigonometric....................
Ukuguqulela Imipumela Yesibalo Kolunye Uhlobo Lwenani......................... 63 Izenzo Zelojiki Nezenkulumiswano............................................................... 64 Ukubala ama-Equation (EQN)............................................................... 65 Ukushintsha Isethingi Lohlobo Lwesibalo Samanje...................................... 67 Izibonelo Zesibalo Semodi ye-EQN.............................................................. 67 Izibalo Zemetriksi (MATRIX)......................
Ngaphambi Kokusebenzisa Umshini Wokubala Mayelana Nale Manuwali • I-CASIO Computer Co., Ltd. ayisoze yaba nacala kumuntu mayelana nokulimala okukhethekile, okube umphumela, okwenzeke ngephutha, noma okubangelwe ukuthengwa noma ukusetshenziswa kwalo mkhiqizo kanye nezinto ezihambisana nawo. • Ngaphezu kwalokho, i-CASIO Computer Co., Ltd.
Izinyathelo Zokuphepha Qiniseka ukuthi ufunda izinyathelo zokuphepha ezilandelayo ngaphambi kokusebenzisa umshini wokubala. Izexwayiso Zokuphepha Ibhetri • Gcina amabhetri ekude nalapho kungafinyelela khona izingane ezincane. • Sebenzisa uhlobo lwebhetri oluhloselwe lomshini wokubala oluboniswe kule manuwali. Izexwayiso Zokusingatha • Noma ngabe isibali sisebenza ngendlela elindelekile, lishintshe ibhetri ngokohlelo oluboniswe ngezansi.
Ukukhanyisa Nokucima • Cindezela • Cindezela ukuze uvule umshini wokubala. (OFF) ukuze ucishe umshini wokubala. Phawula • Umshini wokubala sizozicimela ngokwaso ngemuva kwemizuzu cishe engu-10 noma engu-60 uma ungasetshenziswa. Cindezela lo khiye ukuze uphinde uvule umshini wokubala. Ukulungisa Ukubukeka Kwesibonisi 1. Cindezela (SETUP) ( CONT ). 2. Sebenzisa ineukulungisa ukubukeka kwesibonisi. 3. Ngemuva kokuba isethingi lingendlela olifuna ngayo, cindezela .
(1) Umsebenzi we-Keycap (2) Omunye umsebenzi • Izinhlamvu ezikubakaki (┌ ┐) ezinombala ofana newe-i zisetshenziswa Kumodi ye-CMPLX. • Izinhlamvu ezikubakaki (┌ ┐) ezinombala ofana newe-DEC, HEX, BIN, kanye ne-OCT zisetshenziswa Kumodi ye-BASE-N. • Okulandelayo kuyisibonelo sendlela ukusebenza kwesenzo esihlukile okumelelwe ngayo kule manuwali. Isibonelo: (sin-1)* 1 * Ibonisa umsebenzi ofinyeleleka ngokusebenzisa okhiye ( ) ngaphambi kwayo.
(1) Isibalo esifakiwe (2) Umphumela wesibalo (3) Inkomba • Uma le nkomba ivela ohlangothini lwesokudla lemiphumela yesibalo, kusho ukuthi umphumela wesibalo esivelile uyaqhubeka ngakwesokudla. Sebenzisa ineukuskrola imiphumela yesibalo esibonisiwe. • Uma le nkomba ivela ohlangothini lwesokudla lwesibalo esifakiwe, kusho ukuthi isibalo esibonisiwe siyaqhubeka ngakwesokudla. Sebenzisa ineukuskrola isibalo esibonisiwe.
VCT Lo mshini wokubala Ukumodi ye-VECTOR. Iyunithi ye-engele yasekuqaleni iku-degrees. Iyunithi ye-engele yasekuqaleni iku-radians. Iyunithi ye-engele yasekuqaleni iku-grads. FIX Inombolo ezinzile ezindaweni zedesimali iyasebenza. SCI Inombolo ezinzile kumadijithi abonakalayo iyasebenza. Math Isibonisi Semvelo sikhethwe njengefomethi yesibonisi. Inkumbulo yedatha yomlando wesibalo iyatholakala futhi ingadlalwa kabusha, noma kunedatha engeziwe ngenhla/ngezansi kwesikrini samanje.
Amamodi Wokubala Nokusetha Umshini Wokubala Imodi Yokubala Ngaphambi kokuqalisa isibalo, kufanele uqale ngokufaka imodi efanele njengoba kubonisiwe ethebuleni elingezansi.
Ukulungiselela Ukusetha Umshini Wokubala Ukucindezela (SETUP) kubonisa imenyu yesetaphu, ongayisebenzisela ukulawula indlela izibalo ezenzeka neziboniswa ngayo. Imenyu yesetaphu inezikrini ezimbili, ongeqa phakathi kwazo usebenzisa ine. Amasethingi athalelwe ( ___ ) ayiziqalo ezihlala zinjalo.
MthIO-LineO (Ifomethi Yenombolo: Norm 1) MthIO-LineO (Ifomethi Yenombolo: Norm 2) LineIO (Ifomethi Yenombolo: Norm 1) Phawula • Umshini wokubala ushintshela Esibonisi Somugqa ngokuzenzakalelayo noma nini lapho ufaka Imodi ye-STAT, BASE-N, MATRIX, noma ye-VECTOR.
Ukuze ubalule lokhu: Yenza lo msebenzi: Inani Lezindawo Zedesimali (SETUP) (Fix) - Inani Lamadijithi Abonakalayo (SETUP) (Sci) - Ukubonisa Ububanzi be-Exponential (SETUP) (Norm 2) (Norm) noma (Norm 1) Fix: Inani olibalulayo (kusuka ku-0 kuye ku-9) lulawula inani lezindawo zedesimali yemiphumela yesibalo esibonisiwe. Imiphumela yesibalo ihlanganiselwa kudijithi elibaluliwe ngaphambi kokuba iboniswe.
Ukubalula Ifomethi Yenombolo Epicayo Ukuze ubalule le fomethi yenombolo eyimpica: Yenza lo msebenzi: Izihlanganisi Zesikwele Eside (SETUP) (CMPLX) (a+bi) Izihlanganisi ze-Polar (SETUP) (CMPLX) (r∠θ) Ukubalula Ifomethi ye-Stat Kubalula ukuthi isibonisi sinayo yini noma cha ikholomu ye-FREQ (frequency) Kumodi ye-STAT Isthathistiki Editha.
60 Imizuzu (SETUP) (APO) (60Min.) Ukulungisa Ukubukeka Kwesibonisi (SETUP) ( CONT ) Bheka esithi "Ukuqalisa" mayelana nemininingwane. Ukuqalisa Amasethingi Omshini Wokubala Yenza inqubo elandelayo ukuqalisa umshini wokubala, obuyisela imodi yokubala ku-COMP bese uphindisela wonke amanye amasethingi, kuhlanganise namasethingi emenyu yesetaphu, ngokwasekuqaleni.
Ukufaka Izichazi Namanani Imithetho Evamile Yokufaka Izibalo zingafakwa ngendlela efanayo naleyo ezibhalwa ngayo. Uma ucindezela ukulandelana kwesibalo osifakile kuzohlolwa ngokuzenzakalelayo futhi imiphumela izovela esibonisini. Isibonelo 1: 4 × sin30 × (30 + 10 × 3) = 120 *1 Ukufakwa kwabakaki abavalayo kudingekile ngokuqondene no-sin, sinh, nezinye izisetshenziswa ezihilela abakaki. *2 Lezi mpawu zokuphindaphinda (×) zingasuswa.
• Uma kukhethwe Isibonisi Semvelo, ukucindezela u- kuyilapho i-cursor isekugcineni kwesibalo esifakwayo kuzoyenza ukuba yeqele ekuqaleni, kuyilapho ukucindezela u- njengoba i-cursor isekuqaleni kuzoyenza yeqele ekugcineni. • Ungafaka kuze kube amabhayithi angu-99 wesibalo. Inombolo ngayinye, uphawu, noma umsebenzi uvame ukusebenzisa ibhayithi elilodwa. Eminye imisebenzi idinga amabhayithi amathathu ukuya kwangu-13.
√ Kusukela Emahlukweni Wokubala Imiphumela ehilela uphawu lwe-square root ingaba namathemu angaba mabili (inombolo ephelele nayo ibalwe njengethemu). a√b d√e * ± , √ imiphumela Uma umphumela wesibalo uthatha lesi simo ± c f yesibalo iboniswe kusetshenziswa amafomethi anjengalawo aboniswe ngezansi. ± a√b, ± d ± a√b, ± a'√b ± d'√e c' * Imahluko yama-coefficients (a, b, c, d, e, f) injengoba kubonisiwe ngezansi.
Njengoba kubonisiwe ngenhla, inani noma isichazi esingakwesokudla secursor ngemva kokucindezela (INS) kuba yimpikiswano yomsebenzi obaluliwe ngokulanelayo. Umahluko ohambisana nempikiswano uyikho konke kuze kufikele kubakaki bokuqala abavulayo ngakwesokudla, uma bekhona, noma uyikho konke kufikela ekusebenzeni kokuqala ngakwesokudla (sin(30), log2(4), njll.) Leli khono lingasetshenziswa nale misebenzi elandelayo: , ( ), , , ( ), ( ), ( ), ( ), ( ), , , ( ), (Abs).
Ukususa zonke izibalo ozifakayo: Cindezela .
Izibalo Eziyisisekelo Sebenzisa lo khiye izibalo ezivamile. ukufaka Imodi ye-COMP uma ufuna ukwenza (COMP) Ukushintshashintsha Imiphumela Yokubala Njengoba Isibonisi Semvelo sikhethiwe, ukucindezela ngakunye kwekuzoguquguqula imiphumela yesibalo esibonisiwe phakathi nesimo saso sefrakshini nesimo sedesimali, isimo saso se-√ nesimo sedesimali, noma isimo saso se-π nesimo saso sedesimali.
1 4 1 5 5 0,2 Kubalulekile! • Kuye ngohlobo lomphumela wesibalo esiboniswayo lapho ucindezela lo khiye , inqubo yokuguqulela ingathatha isikhashana ukwenzeka. • Ngemiphumela ethile yesibalo, ukucindezela lo khiye ngeke kuguqule inani elibonisiwe.
Phawula • Ukuhlanganisa amafrakshini namanani edesimali esibalweni lapho ukhethe Isibonisi Somugqa kuzobangela ukuba imiphumela iboniswe njengenani ledesimali. • Imiphumela yesibalo exuba ifrakshini namanani edesimali kuhlala kuyidesimali. • Amafrakshini emiphumeleni yezibalo aboniswa ngemuva kokuncishiselwa ebuncanini bawo.
sexagesimal ne nani ledesimali kuzobangela ukuba imiphumela iboniswe njengenani le-sexagesimal. Ungakwazi nokuguqula phakathi kwe-sexagesimal nedesimali. Okulandelayo kuyifomethi yokufaka i nani le-sexagesimal: {degrees} {imizuzu} {imizuzwana} . Phawula • Kufanele njalo ufake okuthile kwama-degrees nemizuzu, ngisho noma kuyiqanda. Isibonelo 1: 2°20’30” + 39’30” = 3°00’00” 2 20 30 0 39 30 3°0’0” Isibonelo 2: Guqulela u-2°15’18” kudesimali elilingana nakho.
1234×100 Isibonelo 2: Guqula inani u-123 livele ngezimpawu zobunjiniyela, ngokuhlehlisela icashazi le-decimal ngakwesobunxele. 123 123 (←) 0,123×103 (←) 0,000123×106 Izibalo Zokusele Ungasebenzisa ifankshini u-÷R ukuthola ikhoshiyenti kanye nokusele esibalweni sokuhlukanisa. Isibonelo: Ukubala ikhoshiyenti kanye nokusele kuka-5 ÷ 2 (ikhoshiyenti = 2, okusele = 1) (MthIO-MathO) 5 (÷R) 2 5 (÷R) 2 (LineIO) Phawula • Yinani le-quotient yesibalo esithi ÷R kuphela elondwa enkumbulweni ye-Ans.
• Uma ngabe okuhlukanisiwe noma isihlukanisi siyinani elikhulu kakhulu Ngokwesibonelo: 20000000000 (÷R) 17 → Kubalwe njenge: 20000000000 ÷ 17 • Uma i-quotient ingeyona inombolo evumayo, noma uma insalela ingeyona inombolo evumayo noma inani lefrakshini elivumayo Ngokwesibonelo: 5 (÷R) 2 → Kubalwe njenge: -5 ÷ 2 Ukufekthorayiza Ngezinombolo Ezingahlukaniseki Ngokuphelele Ku-COMP Mode, inombolo ephozithivu engeqile emivweni engu-10 ubude ingafekthorayizwa ngezinombolo ezingahlukaniseki ngokuphelele.
Phawula • Ngeke ukwazi ukwenza ukufekthorayiza okuyinhloko lapho inani ledesimali, ifrakshini, noma inani eliphikisayo lomphumela wesibalo libonisiwe. Ukuzama ukwenza kanjalo kuzobangela iphutha lezibalo (Math ERROR). • Ngeke ukwazi ukwenza ukufekthorayiza okuyinhloko lapho kuboniswe imiphumela yesibalo esisebenzisa i-Pol, Rec, ÷R. Umlando Wokubala Nokudlala Futhi Umlando Wokubala Kumodi ye-COMP, CMPLX, noma ye-BASE-N, umshini wokubala ukumbula amabhayithi angaba ngu-200 wedatha yezibalo ezintsha kakhulu.
Ukusebenzisa Amafankshini Enkumbulo Inkumbulo Yomphumela (Ans)/Inkumbulo Yomphumela Owedlule (PreAns) Umphumela otholakele wesibalo sokugcina ugcinwe enkumbulweni yeAns (impendulo). Umphumela wesibalo otholakale ngaphambi kowokugcina ugcinwe enkumbulweni ye-PreAns (impendulo edlule). Ukubonisa umphumela wesibalo esisha kuzohambisa inkumbulo yokuqukethwe kwe-Ans yamanje kunkumbulo ye-PreAns futhi kulondoloze imiphumela yesibalo esisha enkumbulweni ye-Ans.
T1 = 1 1 (Ans = T1 = 1) T2 = 1 1 (Ans = T2 = 1, PreAns = T1 = 1) T3 = T2 + T1 = 1 + 1 (PreAns) (Ans = T3 = 2, PreAns = T2 = 1) T4 = T3 + T2 = 2 + 1 (Ans = T4 = 3, PreAns = T3 = 2) T5 = T4 + T3 = 3 + 2 Imiphumela: Ukulandelana yilokhu {1, 1, 2, 3, 5}. Okuguquguqukayo (A, B, C, D, E, F, M, X, Y) Umshini wakho wokubala unezimiseli ezisethwe kusengaphambili ezingoA, B, C, D, E, F, M, X, no-Y. Ungabela amanani ezimiselini futhi usebenzise izimiseli ezibalweni.
Ukwesula okuqukethwe ngu-A oguquguqukayo 0 (STO) (A) 0 Inkumbulo Ezimele (M) Ungangeza imiphumela yesibalo noma ukhiphe imiphumela enkumbulweni ezimele. Inkomba ka-"M" evela esibonisini lapho kunanoma yiliphi inani ngaphandle kweqanda elilondwe enkumbulweni ezimele.
Izibalo Zamafankshini Sebenzisa lo khiye isenzo sezibalo. ukufaka Imodi ye-COMP uma ufuna ukwenza (COMP) Phawula: Ukusebenzisa izenzo kungabambezela isibalo, okungabangela ukwephuza ukubonisa imiphumela. Ungenzi noma yisiphi isenzo ngokulandelana kuyilapho ulinde imiphumela yesibalo ivele. Ukuphazamisa isibalo esiqhubekayo ngaphambi kokuboniswa .
Isibonelo 1: sinh 1 = 1,175201194 (sinh) 1 1,175201194 (cosh-1) 1 0 Isibonelo 2: cosh-1 1 = 0 Iyunithi Yokuguqulela i-Engele °, r, g : Lezi zindlela zokusebenza zibalula iyunithi ye-engele. ° ibalula udegrees, r radians, kanye g grads. Faka ukusebenza kumenyu evelayo uma wenza lesi senzo sokhiye esilandelayo: (DRG ).
Isibonelo 2: log2 16 = 4 2 (;) 16 (MthIO-MathO, MthIO-LineO) 2 4 16 4 Isibonelo 3: log2(43) = 6 (MthIO-MathO, MthIO-LineO) (x3) 2 6 Isibonelo 4: log2(4)3 = 8 (MthIO-MathO, MthIO-LineO) 2 (x3) 4 8 Isibonelo 5: Ukubala i-ln 90 (= loge 90) kumadijithi amathathu abonakalayo (Sci 3) (SETUP) (Sci) 90 4,50×100 Imisebenzi ye-Power Nemisebenzi ye-Power Root Qaphela ukuthi izindlela zokufaka zalokhu , , , nalokhu zihlukile, kuye ngokuthi usebenzisa Isibonsi Semvelo noma Isibonisi Somugqa.
Isibonelo 5: Ukubala lokhu √2 × 3 (= 3√2 = 4,242640687...) ngokohlamvu lwendawo yesithathu (Fix 3) (SETUP) (MthIO-MathO) (Fix) 2 3√2 4,243 (LineIO) 2 3 4,243 Isibonelo 6: 3√5 + 3√-27 = -1,290024053 (LineIO) ( ( Isibonelo 7: 1 1 1 3 4 )5 27 ) -1,290024053 = 12 (LineIO) 3 4 12 Phawula • Lezi zici zomsebenzi ezilandelayo ngeke zifakwe ngokulandelana: x2, x3, ufaka u-2 u-2 , ngokwesibonelo, i- , cindezela lo khiye 2 3 , x-1. Uma 2 yokugcina izozitshwa.
(X) (;) 1 (;) 1 (e) 1 Isibonelo 2: ∫( 2 ; 1; 5; 1 × 10-7) = 0,8 (LineIO) x 1 (X) (;) 1 1 (;) 5 (;) 0,8 7 π Isibonelo 3: ∫0 (sin x + cos x)2 dx = π (tol: Akuphawulekanga) (MthIOMathO) (Iyunithi ye-engele: Rad) (X) (X) 0 (π) π Izinyathelo Zokuphepha Zezibalo Zokuhlanganisa • Isibalo sokuhlanganisa singenziwa Kumodi ye-COMP kuphela. • Okulandelayo ngeke kusetshenziswe ku-f(x): Pol, Rec, ÷R. Okulandelayo ngeke kusetshenziswe ku-f(x), a, b, noma ku-tol: ∫, d/dx, Σ.
Amacebiso Ezibalo Zokuhlanganisa Eziphumelele Uma isenzo sesikhathi noma isikhathi sokuhlanganisa siphumela esenzweni samanani avumayo noma aphikisayo we-f(x) Yenza izihlanganisi ezihlukene emjikelezweni ngamunye, noma ngokwengxenye evumayo nengxenye ephikisayo, bese uhlanganisa imiphumela.
( ) (X) (π) 0 2 (LineIO) ( ) (X) (;) (π) Isibonelo 2: ( 0 2 d (3x2 - 5x + 2; 2; 1 × 10-12) = 7 (LineIO) dx )3 (X) 5 (X) 2 2 (;) 1 (;) 7 12 Izinyathelo Zokuphepha Zezibalo Zokwahlukanisa • Isibalo sokwahlukanisa singenziwa Kumodi ye-COMP kuphela. • Okulandelayo ngeke kusetshenziswe ku-f(x): Pol, Rec, ÷R. Okulandelayo ngeke kusetshenziswe ku-f(x), a, b, noma ku-tol: ∫, d/dx, Σ. • Uma usebenzisa isenzo se-trigonometric ku-f(x), balula u-Rad njengeyunithi ye-engele.
U-a no-b yizinombolo ezingabalulwa phakathi nokwahlukana kuka -1 × 1010 < a ≦ b < 1 × 1010. (x + 1) = 20 Isibonelo: (MthIO-MathO) ( ) (X) 1 1 5 20 (LineIO) ( ) (X) 1 (;) 1 (;) 5 20 Phawula • Okulandelayo ngeke kusetshenziswe ku-f(x): Pol, Rec, ÷R. Okulandelayo ngeke kusetshenziswe kulokhu f(x), a, noma b: ∫, d/dx, Σ.
Isibonelo 1: Ukuguqulela izihlanganisi zesikwele esibanzi (√2; √2) kuzihlanganisi ze-polar (Iyunithi ye-engele: Deg) (MthIO-MathO) (Pol) 2 (;) 2 r = 2; θ = 45 (Pol) 2 (;) 2 r=2 θ = 45 (LineIO) Isibonelo 2: Ukuguqulela izihlanganisi ze-polar (√2; 45°) kuzihlanganisi zesikwele esibanzi (Iyunithi ye-engele: Deg) (MthIO-MathO) (Rec) 2 (;) 45 X = 1; Y = 1 Umsebenzi Wefektha (!) Isibonelo: (5 + 3)! = 40320 5 3 (x!) 40320 Umsebenzi Wenani Langempela (Abs) Phawula ukuthi indlela yokufaka ihlukile
Isibonelo: Khiqiza izinombolo zamadijithi amathathu 3 ajikelezayo. Amanani wedesimali yamadijithi angu-3 aguqulelwa kumanani we-integer yamadijithi angu-3 ngokuphindaphinda ngo-1000. 1000 (Ran#) 634 92 175 (Imiphumela eboniswe lapha ngeyezinjongo zokufanekisa kuphela. Imiphumela yangempela izohluka.) Inombolo Ephelele Ewumjikelezo (RanInt#) Ukufaka ukusebenza kwefomu le-RanInt#(a; b), elikhiqiza inombolo ephelele ezungezayo ngokokwehluka kuka-a ku-b.
Umsebenzi we-Rounding (Rnd) Impikiswano yalokhu kusebenza yenziwa inani ledesimali bese ijikeleziswe ngokufanele ngenombolo yamanje yokubonisa isethingi lamadijithi (Norm, Fix, noma Sci). Nge-Norm 1 noma i-Norm 2, impikiswano ijikeleziswa ngokwezinombolo zamadijithi angu-10. Nge-Fix nange-Sci, impikiswano ijikeleziswa ngokwamadijithi abaluliwe.
Isibonelo: Ukuze uthole isiphindaphindi sika-9 no-15 esincane kunazo zonke esingujikelele (LCM) 9 (;) 15 45 Ukusebenzisa i-CALC I-CALC ikuvumela ukuba ulondoloze uhlobo lwezibalo oluqukethe izimeleli, ongazikhumbula futhi uzikhulule Ngemodi ye-COMP Nangemodi ye-CMPLX. Okulandelayo kuchaza izinhlobo lwezichazi ongazilondoloza nge-CALC.
Ukuphuma ku-CALC: Isibonelo 2: Ukugcina u-A+Bi bese unquma √3 + i, 1 + √3i usebenzisa iziqondisi ze-polar (r∠θ) (Iyunithi ye-engele: Deg) (A) (CMPLX) (B) (i) (CMPLX) ( r∠θ) 3 (noma )1 1 3 2∠30 2∠60 Ukuphuma ku-CALC: Phawula • Phakathi nesikhathi lapho ucindezela u- uze uphume ku-CALC ngokucindezela , kufanele usebenzise Isibonisi Somugqa ukufaka izinqubo zokufaka. Ukusebenzisa i-SOLVE I-SOLVE isebenzisa indlela kaNewton yokuhlawumbisela isixazululo sama-equation.
Isibonelo: Ukuxazulula u-y = ax2 + b ngokuka-x lapho u-y = 0, a = 1, no-b = -2 (Y) (A) (=) (B) (X) (SOLVE) (1) Iziqondisi zokufaka inani lika-Y (2) Inani lamanje lika-Y 0 1 2 (3) Inani lamanje lika-X Faka inani lokuqala lika-X (Lapha, faka u-1): 1 Isikrini Sesisombululo Ukuphuma ku-SOLVE: Phawula • Phakathi nesikhathi lapho ucindezela ungokucindezela ku- (SOLVE) uze uphume ku-SOLVE , kufanele usebenzise izinqubo zokufaka Isibonisi Somugqa mayelana nokufaka.
• Ngenxa yokulinganiselwa kwendlela ka-Newton, izisombululo kuvame ukuba nzima ukuzithola ezibalweni ezinjengalesi esilandelayo: y = sin(x), y = ex, y = √x. Okuqukethwe Yisikrini Sezisombululo Izisombululo zihlala ziboniswe ngokwendlela yedesimali. (1) Isibalo (Isibalo osifakayo.
3 Faka inani lokuqala lika-X (Lapha, faka u-1): 1 7 13 Okungaguquki Kwesayensi Umshini wakho wokubala uza nokungu-40 okuqukethwe okungamanani angashinshi wesayensi akhelwe phakathi angasetshenziswa kunoma iyiphi imodi ngaphandle kwe-BASE-N. Inani ngalinye le elingashintshi liboniswa njengophawu oluhlukile (njengoπ), olungasetshenziswa ngaphakathi kwezibalo.
1 (CONST) (CONST) (ε0) (μ0) Okulandelayo kubonisa izinombolo ezingamadijithi angu-2 enanini ngalinye elingashintshi elingokwesayensi.
27: (R) inani elingashintshi legesi ye-molar 28: (C0) ijubane lomkhanyo kuvacuum 29: (C1) inani elingashintshi lomsebe wokuqala 30: (C2) inani elingashintshi lomsebe wesibili 31: (σ) inani elingashintshi likaStefan-Boltzmann 32: (ε0) inani elingashintshi likagesi 33: (μ0) inani elingashintshi likazibuthe 34: (Φ0) uzibuthe we-flux quantum 35: (g) ifutha elivamile lamandla adonsela phansi 36: (G0) i-conductance quantum 37: (Z0) izimfanelo zesilinganiso se-vacuum 38: (t) ithempheresha ye-Celsius 39
Isibonelo 2: Ukuguqulela u-100 g kuma-ounce (LineIO) 100 (CONV) (g oz) Isibonelo 3: Ukuguqulela -31°C kuma-Fahrenheit (LineIO) 31 (CONV) (°C °F) Okulandelayo kubonisa inombolo engamadijithi amabili kusiyalezi sokuguqula i-metric ngasinye.
Ukusebenzisa Amamodi Okubala Izibalo Zezinombolo Eziphicayo (CMPLX) Ukwenza izibalo zezinombolo eziyinkimbinkimbi, qala ngokucindezela (CMPLX) ukuze ufake Imodi ye-CMPLX. Ungasebenzisa noma yizixhumanisi zesikwele eside (a+bi) noma izixhumanisi ze-polar (r∠θ) ukufaka izinombolo eziyinkimbinkimbi. Imiphumela yezibalo zezinombolo eziyinkimbinkimbi iboniswe ngokuvumelana nefomethi yesethingi lenani eliyinkimbinkimbi kumenyu yokusetha.
• Ukubonisa imiphumela yesibalo kuyilapho Isibonisi Somugqa sikhethiwe kuzobonisa ia ne-bi (noma r ne-θ) emigqeni ehlukene.
Izibalo Zamastathistiki (STAT) Ukuqalisa isibalo sezibalobalo, yenza lesi senzo (STAT) ukufaka Imodi ye-STAT bese usebenzisa isikrini esivelayo ukukhetha uhlobo lwesibalo ofuna ukusenza.
Isimeleli-esihambisana nesinye (X; Y), ukubuyela emuva kwe-inverse (y = A + B/x) Ukucindezela noma ngimuphi ukhiye kwabangenhla ( kubonisa iStathistiki Editha. (1/X) ukuya ku- ) Phawula • Uma ufuna ukushintsha uhlobo lwesibalo ngemva kokufaka Imodi ye-STAT, sebenzisa lo khiye (STAT/DIST) (Type) ukubonisa uhlobo lwesibalo esikrinini sokukhetha. Ukufaka Idatha Sebenzisa iStathistiki Editha ukufaka idatha. Sebenzisa okhiye (STAT/DIST) abalandelayo ukuze obonise iStathistiki Editha: (Data).
Kubalulekile! • Yonke idatha efakiwe njengamanje kuStathistiki Editha iyasuswa noma nini lapho uphuma Kumodi ye-STAT, kushintshe kusukela kuhlobo lwesibalo sezibalobalo zesimeleli esisodwa kanye nezesimeleli esihambisana nesinye, noma ukushintsha isethingi ye-fomethi ye-Stat kumenyu yokusetha. • Izenzo ezilandelayo azisekelwe yiStathistiki Editha: , (M-), (STO). I-Pol, Rec, ÷R, kanye nezitatimende ezixubile nazo azikwazi ukufakwa kuStathistiki Editha.
Izibalobalo-Zezimeleleli Ezihambisanayo Izinto Zemenyu Yezibalobalo Izinto Ezivamile Khetha le menyu yezinto: Uma ufuna ukuthola lokhu: (Type) Bonisa uhlobo lwesibalo osikhethile esikrinini (Data) Bonisa iStathistiki Editha (Sum) Bonisa i-Sum yemenyu ephakathi yeziqondisi zokubala ama-sum (Var) Bonisa i-Var yemenyu ephakathi yeziqondisi zokubala i-mean, i-standard devation, njll.
Bonisa ye-MinMax yemenyu ephakathi yeziqondisi zokuthola amanani aphansi naphezulu (MinMax) Isimeleli-esisodwa (1-VAR) Iziqondisi Zesibalo Sezibalobalo Imenyu ephakathi ye-Sum ( (STAT/DIST) (Sum)) Khetha le menyu yezinto: Uma ufuna ukuthola lokhu: (∑x2) I-sum yezikwele zesampula yedatha (∑x) I-sum yesampula ledatha Imenyu ephakathi ye-Var ( Khetha le menyu yezinto: (STAT/DIST) (Var)) Uma ufuna ukuthola lokhu: (n) Inani lamasampula (x) I-mean yesampula ledatha (σx) I-Population standard devi
(maxX) Inani eliphezulu (Q1) I-quartile yokuqala (med) I-Median (Q3) I-quartile yesithathu Iziqondisi uma Isibalo Somugqa Wokubuyela Emuva (A+BX) Sikhethiwe Imenyu ephakathi ye-Sum ( (STAT/DIST) (Sum)) Khetha le menyu yezinto: Uma ufuna ukuthola lokhu: (∑x2) I-sum yezikwele ze-X-datha (∑x) I-sum ye-X-datha (∑y2) I-sum yezikwele ze-Y-datha (∑y) I-sum ye-Y-datha (∑xy) I-sum yemikhiqizo ye-X-datha ne-Y-datha (∑x3) I-sum yama-cube we-X-datha (∑x2y) I-sum (yezikwele ze-X-datha × Y-datha)
(σy) I-Population standard deviation ye-Y-datha (sy) I-Sample standard deviation ye-Y-datha Imenyu ephakathi ye-Reg ( Khetha le menyu yezinto: (STAT/DIST) (Reg)) Uma ufuna ukuthola lokhu: (A) Ukubuyela emuva kwe-coefficient engashintshi yethemu lika-A (B) Ukubuyela emuva kwe-coefficient B (r) Ukuhlangan kwe-coefficient r (x̂) Inani elisikiselwe lika-X (ŷ) Inani elisikiselwe lika-Y Imenyu ephakathi ye-MinMax ( Khetha le menyu yezinto: (STAT/DIST) (MinMax)) Uma ufuna ukuthola lokhu: (mi
(B) Umugqa we-coefficient B yokubuyela emuva kwama-coefficient (C) I-Quadratic coefficient C yokubuyela emuva kwama-coefficient (x̂1) Inani elisikiselwe lika-x1 (x̂2) Inani elisikiselwe lika-x2 (ŷ) Inani elisikiselwe lika-y Phawula • x̂, x̂1, x̂2 no ŷ akuzona izimeleli. Kuyiziqondisi zohlobo oluthatha impikiswano ngokushesha ngaphambi kwazo. Bheka esithi "Ukubala Amanani Asikiselwe" mayelana nokwaziswa okubanzi.
(SETUP) (STAT) (OFF) (SETUP) (Fix) (STAT) (A+BX) 20 110 200 290 3150 7310 8800 9310 (STAT/DIST) (Reg) (r) 0,923 (STAT/DIST) (STAT/DIST) (Type) (Reg) (ln X) (r) 0,998 (STAT/DIST) (Reg) (A) -3857,984 (STAT/DIST) (Reg) (B) 2357,532 Imiphumela: Ukubuyela Emuva Komugqa Wokuhlangana kweCoefficient: 0,923 Ukubuyela Emuva kwe-Logarithmic Yokuhlangana yeCoefficient: 0,998 Ifomula Yokubuyela Emuva kwe-Logarithmic: y = -3857,984 + 2357,532lnx Ukubala Amanani Asikiselwe Ngokusekelwe kufomula yokubuyel
Ukwenza Izibalo Zokwaba Okwejwayelekile Uma isibalo sesimeleli esisodwa sezibalobalo sikhethiwe, ungenza isibalo esivamile sokusabalalisa usebenzisa imisebenzi eboniswe ngezansi (STAT/ kumenyu evelayo uma wenza isenzo sokhiye esilandelayo: DIST) (Distr). P, Q, R: Lezi zenzo zithatha impikiswano t futhi zinquma ithuba lokusabalalisa okuvamile njengoba kubonisiwe ngezansi. t: Lesi senzo siqhutshwa ngempikiswano ka-X, futhi sinquma isimeleli X-x .
Imodi yenombolo yesiqalo engokwasekuqaleni uma ufaka Imodi ye-BASEN iyidesimali, okusho ukuthi ukufaka imiphumela yesibalo isebenzisa ifomethi yenombolo yedesimali. Cindezela omunye walabokhiye ukushintsha amamodi enombolo: I(DEC) yedesimali, i(HEX) ye-hexadecimal, i(BIN) ye-binary, noma i(OCT) ye-octal.
Imodi ye-Base-n Umahluko Wokufakwayo/Wokukhishwayo Kophawu lokuhlanganisa: 0000000000000000 ≦ x ≦ 0111111111111111 I-Binary Kophawu lokususa: 1000000000000000 ≦ x ≦ 1111111111111111 Kophawu lokuhlanganisa: 00000000000 ≦ x ≦ 17777777777 I-Octal Kophawu lokususa: Idesimali 20000000000 ≦ x ≦ 37777777777 -2147483648 ≦ x ≦ 2147483647 Kophawu lokuhlanganisa: I-Hexadecimal 00000000 ≦ x ≦ 7FFFFFFF Kophawu lokususa: 80000000 ≦ x ≦ FFFFFFFF Ukubalula Imodi Yenombolo Yenani Eliqondile Elifakwayo Ungafaka
(HEX) 0000022B (BIN) 0000001000101011 (OCT) 00000001053 Izenzo Zelojiki Nezenkulumiswano Umshini wakho wokubala ukunikeza izenzo zelojiki (and, or, xor, xnor) nemisebenzi (Not, Neg) mayelana nezenzo zelojiki neze-negetion kumanani e-binary. (BASE) ukufaka izenzo Sebenzisa imenyu evelayo uma uchofoza zelojiki nemisebenzi.
Isibonelo 2: Ukunquma ilojiki ye-OR ye-10112 ne-110102 (10112 or 110102) 1011 (BASE) (or) 11010 0000000000011011 Isibonelo 3: Ukunquma ilojiki ye-XOR ye-10102 ne-11002 (10102 xor 11002) 1010 (BASE) (xor) 1100 0000000000000110 Isibonelo 4: Ukunquma ilojiki ye-XNOR ye-11112 ne-1012 (11112 xnor 1012) 1111 (BASE) (xnor) 101 1111111111110101 Isibonelo 5: Ukunquma isincomo se-bitwise ye-10102 (Not(10102)) (BASE) (Not) 1010 1111111111110101 Isibonelo 6: Uku-negate (thatha isincomo sesibili) se-10110
Ukukhetha uhlobo lwesibalo: Cindezela lo khiye: Izibalo zelayini ezikanyekanye ezinokungaziwa okubili (anX + bnY = cn) Izibalo zelayini ezikanyekanye ezinokuthathu okungaziwa (anX + bnY + cnZ = dn) Izibalo ze-quadratic (aX2 + bX + c = 0) Izibalo ze-cubic (aX3 + bX2 + cX + d = 0) 3. Sebenzisa i-kuKho-efishiyenti Editha evelayo ukufaka izimeleli zecoefficient.
Phawula • Nakuba Isibonisi Semvelo sikhethiwe, izisombululo zezibalo zelayini ezikanyekanye azibonisiwe kusetshenziswa noma yiliphi ifomu elihilela-√ . • Amanani ngeke aguqulelwe ku-engineering notation esikrinini sesisombululo. • Umayelezo ovelayo wokukwazisa uma kungenasisombululo noma uma kunezisombululo ezingenamkhawulo. Ukucindezela i- noma i- kuzophindela kuKho-efishiyenti Editha. Ukushintsha Isethingi Lohlobo Lwesibalo Samanje (EQN) bese ukhetha uhlobo lwesibalo kusuka kumenyu Cindezela evelayo.
(X-Value Minimum=)* 3 4 (Y-Value Minimum=)* - 57 8 * Ubuncane bendawo yenani elibonisiwe uma u-a > 0. Ubukhulu bendawo yenani elibonisiwe uma u-a < 0. Isibonelo 4: x2 - 2√2x + 2 = 0 (MthIO-MathO) (EQN) 1 (aX2 + bX + c = 0) 2 2 2 (X=) √2 Isibonelo 5: x3 - 2x2 - x + 2 = 0 (EQN) 1 (aX3 + bX2 + cX + d = 0) 2 1 2 (X1=) -1 (X2=) 2 (X3=) 1 Izibalo Zemetriksi (MATRIX) Sebenzisa Imodi ye-MATRIX ukwenza izibalo ezihilela ama-matrix afikela emigqeni yamakholomu engu-3.
2. Cindezela (MatA) (2×2). • Lokhu kuzobonisa i-Matrix Editor yokufaka izakhi ze-matrix ka-2 × 2 ozibalulile ye-MatA. (1) "A" umele "MatA". 3. Faka izakhi ze-MatA: 2 1 1 1 . 4. Yenza izenzo ezilandelayo: (MATRIX) (Data) (MatB) (2×2). • Lokhu kuzobonisa i-Matrix Editor yokufaka izakhi ze-matrix ka-2 × 2 oyibalulile ye-MatB. 1 1 2 . 5. Faka izakhi ze-MatB: 2 6. Cindezela ukuthuthukisa isikrini sesibalo, futhi wenze isibalo sokuqala (MatA×MatB): (MATRIX) (MatA) (MATRIX) (MatB) .
• Ukufaka isimeleli se-MatAns esibalweni, sebenzisa okhiye abalandelayo: (MATRIX) (MatAns). • Ukucindezela noma yimuphi walabokhiye abalandelayo kuyilapho isikrini se-MatAns sibonisiwe kuzoshintsha ngokuzenzakalelayo esikrinini sokubala: , , , , , , (x3). Isikrini sesibalo sizobonisa isimeleli se-MatAns esilandelwa yisenzo noma umsebenzi wokhiye omcindezele. Ukwabela Nokuhlela Idatha Yesimeleli se-Matrix Kubalulekile! • Izenzo ezilandelayo azisekelwe yi-Matrix Editor: , (M-), (STO).
2. Cindezela (STO), bese wenza esinye salezi zenzo zokhiye ukubalula indawo yokukopishela: (MatA), (MatB), noma (MatC). • Lokhu kuzobonisa i-Matrix Editor ngokuqukethwe kwendawo yokukopishela. Izibonelo Zezibalo Zemetriksi Izibonelo ezilandelayo zisebenzisa i-MatA = Esibonelweni 1, ne-MatC = ne-MatB = Esibonelweni 2. Isibonelo 3: 3 × MatA (i-Matrix Scalar Multiplication). 3 (MATRIX) (MatA) Isibonelo 4: Thola isinqumi sika-MatA (det(MatA)).
(MATRIX) (x3) (MatA) Isibonelo 9: Nquma i-MatA = ifomu lomugqa we-echelon. (MATRIX) (Ref) (MATRIX) (MatA) Isibonelo 10: Nquma i-MatA = ifomu elincishisiwe lomugqa we-echelon. (MATRIX) (Rref) (MATRIX) (MatA) Ukwenza Ithebula Lezinombolo kusukela Emisebenzini Emibili (TABLE) I-TABLE ikhiqiza itafula lezinombolo ngokusekelwe emsebenzini owodwa noma emibili. Ungasebenzisa umsebenzi we-f(x) noma imisebenzi emibili okungu-f(x) no-g(x).
3. Ekusabeleni eziyalezini ezivelayo, faka amanani ofuna ukuwasebenzisa, ngokucindezela ingemva kwenye. Kwalesi siyalezi: Faka lokhu: Start? Faka umkhawulo ophansi ka-X (Default = 1). End? Fka umkhawulo ophezulu ka-X (Default = 5). Phawula: Qiniseka ukuthi inani leEnd lihlala lilikhulu kunenani le-Start. Step? Faka isinyathelo sokukhuphula (Default = 1). Phawula: I-Step sibalula ukuthi kufanele libe ngakanani inani le-Start ngokulandelana kokukhuphuka njengoba ithebula lezinombolo likhiqizwa.
・Ukucindezela ngaphandle kokufaka okuthile kwe, g(x) kuzokhiqiza ithebula lezinombolo ngokusekelwe ku-f(x) kuphela. (X) 1 1 1 0 2 5 Phawula • Ungasebenzisa isikrini sethebula lezinombolo ukubheka amanani kuphela. Okuqukethwe ngeke kulungiseke. • Isenzo sokukhiqiza ithebula lezinombolo kubangela isimeleli sokuqukethwe u-X ukuba sishintshe. • Inani eliphakeme kunawo wonke lemigqa ethebhuleni yezinombolo ekhiqiziwe liya ngesethingi yethebhula kumenyu yokusetha.
1. Cindezela (VECTOR) ukufaka Imodi ye-VECTOR. 2. Cindezela (VctA) (2). • Lokhu kuzobonisa i-Vector Editor yokufaka i-vector ye-2-dimensional ye-VctA. (1) "A" umele "VctA". 3. Faka amalungu e-VctA: 1 2 . 4. Yenza izenzo ezilandelayo: (VECTOR) (Data) (VctB) (2). • Lokhu kuzobonisa i-Vector Editor yokufaka i-vector ye-2-dimensional ye-VctB. 5. Faka amalungu e-VctB: 3 4 . ukuthuthukisa isikrini sesibalo, nokwenza isibalo (VctA 6. Cindezela +VctB): (VECTOR) (VctA) (VECTOR) (VctB) .
• Ukucindezela omunye walo khiye kuyilapho isikrini se-VctAns sibonisiwe kuzoshintshela esikrinini sesibalo ngokuzenzakalelayo: , , , . Isikrini sesibalo sizobonisa isimeleli se-VctAns esilandelwa ngesinye isenzo noma umsebenzi wokhiye ocindezelwe. Ukwabela Nokuhlela Idatha Yesimeleli se-Vector Kubalulekile! • Izenzo ezilandelayo azisekelwe yi-Vector Editor: , (M-), (STO). I-Pol, Rec, ÷R, nezitatimende ezikaningi ngeke zifakwe kanye ne-Vector Editor.
Izibonelo Zezibolo ze-Vector Izibonelo ezilandelayo zisebenzisa i-VctA = (1, 2) ne-VctB = (3, 4) Esibonelweni 1, ne-VctC = (2, -1, 2) Esibonelweni 2.
(SETUP) (Fix) (VECTOR) (VctA) (VECTOR) (Dot) (VECTOR) (VctB) (Abs) (VECTOR) (VctA) (Abs) (VECTOR) (VctB) (cos-1) Izibalo Zokwaba (DIST) Ungasebenzisa izinqubo ngezansi ukwenza iinhlobo eziyisikhombisa ezihlukahlukene zezibalo zokusabalalisa. 1. Cindezela (DIST) ukufaka Imodi ye-DIST. 2. Kumenyu evelayo, khetha uhlobo lwesibalo sokusabalalisa.
4. Emuva kokufaka amanani wazo zonke izimeleli, cindezela . • Lokhu kuveza imiphumela yesibalo. • Ukucindezela inoma ikuyilapho imiphumela ibonisiwe kuzobuyisela okufakiwe esikrinini sesimeleli sokuqala. Phawula • Ukushintsha uhlobo lwesibalo sokusabalalisa emva kokufaka Imodi ye-DIST, cindezela (STAT/DIST) (Type) bese ukhetha uhlobo lwesisabalalisi osifunayo. • Ukunemba kwesibalo sokusabalalisa kufinyelela kumadijithi amahlanu aphawulekayo.
(1) Uhlobo lwesibalo sokusabalalisa (2) Inani elisendaweni yamanje ye-cursor (3) X: Isampula yedatha (4) Ans: Imiphumela yesibalo Ukuhlela isampula yedatha: Hambisa i-cursor kuseli eliqukethe idatha ofuna ukuyihlela, ufake idatha . entsha, bese ucindezela Ukususa yonke idatha: Hambisa i-cursor iye kusampula yedatha ofuna ukuyisusa bese ucindezela . Ukufaka isampula yedatha: Hambisa i-cursor endaweni lapho ofuna ukuufaka khona isampula (STAT/DIST) (Edit) (Ins), bese ufaka yedatha, cindezela isampula yedatha.
2 35 Imiphumela: 0,1760326634 • Ukucindezela inoma i- kuphindela esikrinini sokufaka u-x. Isibonelo 2: Ukubala amathuba e-binomial yesampula yedatha {10; 11; 12; 13; 14} uma u-N = 15 no-p = 0,6 (DIST) (Binomial PD) Bonisa Isikrini se-List: (List) • Ukubalula idatha usebenzisa ifomethi yepharamitha, cindezela 10 11 12 13 14 15 0 6 Imiphumela: x = amathuba we-binomial ka-10 ≒ 0,18594 x = amathuba we-binomial ka-11 ≒ 0,12678 81 (Var).
x = amathuba we-binomial ka-12 ≒ 0,063388 x = amathuba we-binomial ka-13 ≒ 0,021942 x = amathuba we-binomial ka-14 ≒ 4,7018 × 10-3 • Ukucindezela ikuphindela esikrinini sokufaka i-N. Ukucindezela ikuphindela Esikrini se-List (ukufaka amasampula edatha elondiwe). Phawula • Okulandelayo ngeke kusetshenziswe ekusabalaliseni izibalo: Pol, Rec, ÷R, ∫, d/dx. • Uma idatha ibaluliwe kusetshenziswa ifomethi yepharamitha, bala imiphumela elondwe enkumbulweni ye-Ans.
• Ukuze ushintshe inani elifanelekile osunakho ukufaka, hambisa isikhombisi kuseli elifanele, ufake inani elisha, bese ucindezela u. • Ukucindezela ukuzosula wonke ama-coefficients abe yi-zero. Phawula: Imisebenzi elandelayo ayisekelwa yiKho-efishiyenti Editha: , (M-), (STO). I-Pol, i-Rec, ÷ R, kanye nezitatimende ezixubile nazo azikwazi ukufakwa kuKho-efishiyenti Editha. 5. Ngemuva kokuthi onke amanani ayindlela ofuna ngayo, cindezela u. • Lokhu kuzobonisa izisombululo.
Isibonelo 2: x2 + 2x - 3 ≧ 0 (MthIO-MathO) (INEQ) (aX2 + bX + c) (aX2 + bX + c ≧ 0) 2 3 1 Phawula: Izisombululo ezibonisiwe njengoba kuveziwe lapha uma Isibonisi Somugqa sikhethiwe Isibonelo 3: 2x3 - 3x2 ≧ 0 (MthIO-MathO) (INEQ) (aX3 + bX2 + cX + d) (aX3 + bX2 + cX + d ≧ 0) 2 3 Isibonelo 4: 3x3 + 3x2 - x > 0 (MthIO-MathO) (INEQ) (aX3 + bX2 + cX + d) 3 (aX + bX2 + cX + d > 0) 3 1 3 Phawula: Izisombululo ezibonisiwe njengoba kuveziwe lapha uma Isibonisi Somugqa sikhethiwe.
Isibonelo: x2 ≧ 0 (MthIO-MathO) (INEQ) (aX2 + bX + c) (aX2 + bX + c ≧ 0) 0 0 1 • Ethi "No-Solution" ivela esikrinini sesisombululo uma kungekho sisombululo esiphumayo kokungalingani (njengo-X2 < 0). Izibalo ze-Ratio Imodi ye-RATIO ikuvumela ukuthi unqume inani le-X endaweni yokubonisa isilinganiso a : b = X : d (noma a : b = c : X) lapho amanani we-a, b, c no-d ayaziwa. Lokhu okulandelayo kukhombisa inqubo ejwayelekile yokusebenzisa i-RATIO. 1. Cindezela (RATIO) ukufaka Imodi ye-RATIO. 2.
• Lokhu kukhombisa isixazululo (inani le-X). • Ukucindezela uEditha. futhi kuzobuyela kusihleli seKho-efishiyenti Kubalulekile! • Kuzovela i-Math ERROR uma wenza ukubalwa ngenkathi u-0 efakwa ku-coefficient. Ukushintsha Uhlobo Lokuvezwa kwe-Ratio Faka futhi Imodi ye-RATIO bese ukhetha uhlobo lwesilinganiso sokukhetha olufunayo kumenyu evela. Ukushintsha uhlobo lwesichasiselo sesilinganiso kubangela amanani wawo wonke amakho-efishiyenti Wekhoefishiyenti Editha ukushintshela eqandeni.
Ulwazi Lobuchwepheshe Amaphutha Umshini wokubala uzobonisa umyalezo wephutha noma nini lapho kwenzeka iphutha phakathi nesibalo. Kunezindlela ezimbili zokususa umyalezo wephutha obonisiwe: Cindezela inoma iukubonisa indawo yephutha, noma ukucindezela iukususa umyalezo nesibalo. Kubonisa Indawo Yephutha Njengoba umyalezo wephutha ubonisiwe, cindezela inoma iukuze uphindele esikrinini sokubala. I-cursor izobekwa endaweni lapho iphutha lenzeke khona, ilungele ozokufaka.
Imiyalezo Yephutha I-Math ERROR Imbangela: • Umphumela omaphakathi noma wokugcina wesibalo osenzayo udlula umehluko wesibalo esivumelekile. • Okufakile kudlula lokho okuwumehluko ovumeleke ukufakwa (ikakhulukazi uma wenza imisebenzi). • Isibalo osenzayo siqukethe izenzo zezibalo ezingekho emthethweni (njengokuhlukanisa ngeqanda). Isenzo: • Bheka amanani owafakile, nciphisa inani lezibalo, bese uzame futhi.
I-Dimension ERROR (I-MATRIX ne-VECTOR Mode kuphela) Imbangela: • I-matrix noma i-vector ozama ukuyisebenzisa esibalweni ifakwe ngaphandle kokubalula ubukhulu bayo. • Uzama ukwenza isibalo ngama-matrix noma ama-vector ubukhulu bawo obungavumeli lolo hlobo lwesibalo. Isenzo: • Bonisa ubukhulu be-matrix noma be-vector bese wenza isibalo futhi. • Hlola ubukhulu obubaluliwe bama-matris noma ama-vector ukuze ubone ukuthi ayahambisana yini nesibalo.
I-Time Out Error Imbangela: • Isibalo samanje sokwahlukanisa noma sokuhlanganisa siphela ngaphandle kokuqeda isimo esigcwalisiwe. Isenzo: • Zama ukukhulisa inani lika-tol. Phawula ukuthi lokhu kuphinde kunciphise isisombululo sokunemba. Ngaphambi Kokuthatha Ngokuthi Isibali Asisebenzi Kahle… Yenza izinyathelo ezilandelayo noma nini lapho kwenzeka iphutha phakathi nesibalo noma uma imiphumela yesibalo inasi yilokho okulindele.
1. Cindezela (OFF) ukuze ucishe umshini wokubala. 2. Ngemuva kwesibali, khumula amabhawodi kanye nesembozo. 3. Khipha ibhetri, bese ufaka ibhetri entsha izimpawu olokuhlanganisa (+) nolokususa (-) zibheke endaweni efanele. 4. Buyisela isembozo. 5. Qalisa isibali: (CLR) (All) (Yes). • Ungaseqi lesi sinyathelo esingenhla! Ukulandelana Kokubaluleka Kwesibalo Ukulandelana kokubaluleka kwesibalo esifakiwe kuhlaziywa ngokuvumelana nemithetho engezansi.
4 Amaqhezu 5 Uphawu lokususa ((-)), izimpawu ze-base-n (d, h, b, o) 6 Iziqondisi zokuguqulela i-metric (cm in, njll.
Umkhawulo Nokunemba Kokubala Umkhawulo Wokubala ±1 × 10-99 kuya ±9,999999999 × 1099 noma 0 Inani Lemivo Ekubaleni Kwangaphakathi Imivo engu-15 Ukunemba Ngokuvamile, ±1 emuvweni we-10 ekubaleni okukodwa. Ukunemba embukisweni ongumphindwa kungu ±1 emuvweni obaluleke kancane kunayo yonke. Amaphutha ayanqwabelana ezibalweni ezilandelanayo.
cosh-1x tanhx tanh-1x logx, lnx 10x 1 ≦ x ≦ 4,999999999 × 1099 0 ≦ |x| ≦ 9,999999999 × 1099 0 ≦ |x| ≦ 9,999999999 × 10-1 0 < x ≦ 9,999999999 × 1099 -9,999999999 × 1099 ≦ x ≦ 99,99999999 √x -9,999999999 × 1099 ≦ x ≦ 230,2585092 x2 0 ≦ x < 1 × 10100 |x| < 1 × 1050 x-1 |x| < 1 × 10100; x ≠ 0 √x 3 |x| < 1 × 10100 x! 0 ≦ x ≦ 69 (x yinombolo ephelele) ex nPr nCr 0 ≦ n < 1 × 1010, 0 ≦ r ≦ n (n, r bayizinombolo eziphelele) 1 ≦ {n!/(n-r)!} < 1 × 10100 0 ≦ n < 1 × 1010, 0 ≦ r ≦ n (n, r bayizinombo
xy x > 0: -1 × 10100 < ylogx < 100 x = 0: y > 0 m x < 0: y = n, (m, n bayizinombolo 2n + 1 eziphelele) Nokho: -1 × 10100 < ylog |x| < 100 √y y > 0: x ≠ 0, -1 × 10100 < 1/x logy < 100 y = 0: x > 0 2n + 1 y < 0: x = 2n+1, (m ≠ 0; m, n m bayizinombolo eziphelele) Nokho: -1 × 10100 < 1/x log |y| < 100 a b/c Isamba senombolo ephelele, inombolo engenhla eqhezwini, nenombolo engezansi eqhezwini kumelwe sibe imivo engu-10 noma ngaphansi (sekuhlangene nophawu lokuhlukanisa).
Imininingwane Amandla Adingekayo: Ibhetri lelanga elakhelwe ngaphakathi; ibhetri LR44 (GPA76) × 1 Impilo Yebhetri Elinganiselwayo: Iminyaka emithathu (uma isibali sisetshenziswa ihora elilodwa ngosuku) Amazinga Okushisa Esisebenza Ngaphansi Kwawo: 0°C kuya ku-40°C Ubungako: 11,1 (H) × 77 (W) × 161,5 (D) mm Isisindo Esilinganiselwayo: 95 g kuhlanganise nebhetri Ukuqinisekisa Ubuqiniso Bomshini Wakho Wokubala Sebenzisa izinyathelo ezingezansi ukuqinisekisa ukuthi umshini wokubala uyi-CASIO yangempela. 1.
Okuvame Ukubuzwa Okuvame Ukubuzwa ■ Ngingakwenza kanjani ukufaka futhi ngibonise imiphumela ngendlela efanayo engenze ngayo imodeli engenayo Ifomethi yeNatural Textbook? → Yenza lesenzo esilandelayo sokhiye: (SETUP) (LineIO). Bheka esithi "Ukulungiselela Ukusetha Umshini Wokubala" mayelana nokwaziswa okubanzi.
■ Ngingawuphindisela kanjani umshini wokubala kumasethingi wasekuqaleni? (CLR) (Setup) (Yes). → Yenza lesenzo esilandelayo sokhiye: ■ Uma ngenza isibalo, kungani ngithola imiphumela yesibalo ehluke ngokuphelele kweyamamodeli akudala omshini wokubala weCASIO? → Ngemodeli ye-Natural Textbook Display, impikiswano yokusebenza esebenzisa abakaki kufanele ilandelwe ngabakaki abavalayo.
© 2020 CASIO COMPUTER CO., LTD.