User`s guide

~ VctA. VctB (Vector dot product)
VCTm
@VctAt!!!I ([J(VECTOR)IL)(Dot)VctB@ I VetA'VetB
h VctA x VctB (Vector cross product)
@VctAOOVctB@I.......
Obtain the absolute values of VctC.
VCTm
@t!!!I ffiii)(Abs)VctCQ) @ I Abs(VetC)
h.
Determine the angle formed by VctA and VctB to three decimal
places (Fix 3). lEI
(A.B) .
. (A.B)
(cos 6 =IAIIBI ,which becomes 6 =cos- IAIIBI)
1!!1!I@2ffi(SETUP)[ID(Fix)!I)
@mVctA@ij)([J(VECTOR)IL)(Dot)VctBIJ)IE
VCTm fIX
m t!!!I ffiii)(Abs)VctAIJ) @iiJffiii)(Abs)
I
(VetA'VctB)..(Ab~
VctBIJ)Q)@ 0.984
YCTm nx
@iiJ l§j(cos")1!;) IJ) @ I cos-I(Ans)
10.305
~gu~liiyC!lc..u!at1O"n$(i)lI!Qf ..... 2~
You can use the following procedure to solve a quadratic inequality or cubic
inequality.
,. Press @2ffi<i)CD(INEQ)to enter the INEQ Mode.
2.Onthe menu that appears, select an inequalitytype.
To select this Inequalitytype: Press this key:
Quadraticinequality
m (aX'+bX+c )
Cubicinequality m (aX' + bX' +cX+ d )
3.Onthe menuthat appears,use keys CDthroughI1Jtoselectthe inequality
symboltypeand orientation.
4.Use the CoefficientEdrtorthat appears to inputcoefficientvalues.
.To solve x' + 2x - 3 < 0, for example, input the coefficients a = I, b = 2,
c =-3 bypressing1@2 @!El3@.
E-43
.To change a coefficient value you already have input, move the cursor
to the appropriate cell, input the new value, and then press @.
.Pressing @ willclear all of the coefficients to zero.
Note: The followingoperations are not supported by the Coefficient Editor:
!iE), t!!!IlMB(M-),I!!1!II§)(STO). Pol, Rec, +R, and multi.statements also
cannot be input with the Coefficient Editor.
5. After all the values are the way you want, press @.
.This will display the solutions.
.To return to the Coefficient Editor while the solutions are displayed, press
@.
Note: Valuescannot be convertedto engineeringnotationon the solution
screen.
Changing the Inequality Type
Press @2ffi<i)CD(INEQ) and Ihen select an inequality type from the menu
thatappears. Changingtheinequalitytype causesthe valuesof allCoefficient
Editor coefficients to change to zero.
INEQ Mode Calculation Examples
/ x'+2x-3<0 rmm
1
1: aX2 +bX+C >°
@!ID<i)CD(INEQ)CD(aX'+ bX + c) 2:aX2+bX+c<O
3:aX2+bX+c;'O
4: aX2+bX+C=0
m(aX' + bX+c <0)
m NItti
~ b. cUI
aX2+bX+c<O
o
m ...
I · I b .~)
aX2+bX+c<O
-3
m
@ .A<X<B
-3<X<
1
Note: Solutions are displayed as shown
here when Linear Display is selected.
-3
1
/ x'+2x-3;;; 0 rmm
@2ffi<i)CD(INEQ)CD(aX'+bX+c)
!I) (aX' + bX + c ;: 0)
1 @2@!El3@
m ...
I' I b ~)
aX2+&X+C~O
-3
m Math
X~-3. HX
'E-44