User Manual

Table Of Contents
6-53
، ﲔﻨﺛﺍ - ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
p
0
”) ﺔﻨﻴﻌﻟﺍ ﺔﺒﺴﻧ ﺭﺎﺒﺘﺧﺍ ﻁﻭﺮﺷ ...... ( Z ﺭﺎﺒﺘﺧﺍ ﺔﻣﺎﻋﺩ-1) ﺔﻣﺎﻋﺩ
(ﻰﻠﻋﺍ ﺪﺣﺍﻭ - ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ “> p
0
،ﻲﻧﺩﺍ ﺪﺣﺍﻭ - ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
< p
0
،ﲔﻨﺛﺍ ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
p ”) ﺔﻨﻴﻌﻟﺍ ﺔﺒﺴﻧ ﺭﺎﺒﺘﺧﺍ ﻁﻭﺮﺷ ........... (Z ﺭﺎﺒﺘﺧﺍ ﺔﻣﺎﻋﺩ-2)
p
1
> p
2
، 2 ﺔﻨﻴﻌﻟﺍ ﻦﻣ ﺮﻐﺻﺍ ﻲﻫ 1 ﺔﻨﻴﻌﻟﺍ ﺚﻴﺣ ﺪﺣﺍﻭ ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
< p
2
.(2 ﺔﻨﻴﻌﻟﺍ ﻦﻣ ﺮﺒﻛﺍ ﻲﻫ 1 ﺔﻨﻴﻌﻟﺍ ﺚﻴﺣ ﺪﺣﺍﻭ-ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
“<
0
، ﲔﻨﺛﺍ-ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
0
”) ﻥﺎﻜﺴﻟﺍ ﻂﺳﻮﺘﻣ ﺔﻤﻴﻗ ﺭﺎﺒﺘﺧﺍ ﻁﻭﺮﺷ ............... ( t ﺭﺎﺒﺘﺧﺍ ﺔﻨﻴﻋ-1)
.(ﻰﻠﻋﺍ ﺪﺣﺍﻭ - ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ “>
0
،ﻲﻧﺩﺍ ﺪﺣﺍﻭ - ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
،ﲔﻨﺛﺍ
-ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
2
”)ﺔﻨﻴﻌﻟﺍ ﻂﺳﻮﺘﻣ ﺔﻤﻴﻗ ﺭﺎﺒﺘﺧﺍ ﻁﻭﺮﺷ ..............(t ﺭﺎﺒﺘﺧﺍ ﺔﻨﻴﻋ-2)
1
“>
2
، 2 ﺔﻨﻴﻌﻟﺍ ﻦﻣ ﺮﻐﺻﺍ ﻲﻫ 1 ﺔﻨﻴﻌﻟﺍ ﺚﻴﺣ ﺪﺣﺍﻭ -ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ “<
2
.(2 ﺔﻨﻴﻌﻟﺍ ﻦﻣ ﺮﺒﻛﺍ ﻲﻫ 1 ﺔﻨﻴﻌﻟﺍ ﺚﻴﺣ ﺪﺣﺍﻭ ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
ﻞﻳ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
“< 0” ،ﲔﻨﺛﺍ - ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ 0”)
ρ
-ﺔﻤﻴﻘﻟﺍ ﺭﺎﺒﺘﺧﺍ ﻁﻭﺮﺷ
...( t LinearReg ﺭﺎﺒﺘﺧﺍ)
β
&
ρ
.(ﻰﻠﻋﺍ ﺪﺣﺍﻭ - ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ “> 0”،ﺮﻐﺻﺍ ﺪﺣ -
،ﲔﻨﺛﺍ
- ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
2
”) ﻥﺎﻜﺴﻠﻟ ﻱﺭﺎﻴﻌﳌﺍ ﻑﺍﺮﺤﻧﻻﺍ ﺭﺎﺒﺘﺧﺍ ﻁﻭﺮﺷ .............( F ﺭﺎﺒﺘﺧﺍ ﺔﻨﻴﻋ-2)
1
>
2
، 2 ﺔﻨﻴﻌﻟﺍ ﻦﻣ ﺮﻐﺻﺍ ﻲﻫ 1 ﺔﻨﻴﻌﻟﺍ ﺚﻴﺣ ﺪﺣﺍﻭ-ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ “<
2
.(2 ﺔﻨﻴﻌﻟﺍ ﻦﻣ ﺮﺒﻛﺍ ﻲﻫ 1 ﺔﻨﻴﻌﻟﺍ ﺚﻴﺣ ﺪﺣﺍﻭ - ﻞﻳﺫ ﺭﺎﺒﺘﺧﺍ ﺩﺪﺤﻳ
ﺽﺮﺘﻔﳌﺍ ﻥﺎﻜﺴﻟﺍ ﻂﺳﻮﺘﻣ
.......................................
0
( > 0 ) ﻥﺎﻜﺴﻠﻟ ﻱﺭﺎﻴﻌﳌﺍ ﻑﺍﺮﺤﻧﻻﺍ ........................................
(
1
> 0 ) 1 ﺔﻨﻴﻌﻠﻟ ﻥﺎﻜﺴﻠﻟ ﻱﺭﺎﻴﻌﳌﺍ ﻑﺍﺮﺤﻧﻻﺍ .......................................
1
(
> 0 ) 2 ﺔﻨﻴﻌﻠﻟ ﻥﺎﻜﺴﻠﻟ ﻱﺭﺎﻴﻌﳌﺍ ﻑﺍﺮﺤﻧﻻﺍ .......................................
2
(26 ﻰﻟﺍ 1 ﺔﻤﺋﺎﻗ) ﺕﺎﻧﺎﻴﺒﻛ ﺎﻬﺗﺎﻳﻮﺘﺤﻣ ﻡﺍﺪﺨﺘﺳﺍ ﺪﻳﺮﺗ ﻲﺘﻟﺍ ﺔﻤﺋﺎﻘﻟﺍ .................................... List
(26 ﻰﻟﺍ 1 ﺔﻤﺋﺎﻗ)1 ﺔﻨﻴﻌﻟﺍ ﺕﺎﻧﺎﻴﺒﻛ ﺎﻬﺗﺎﻳﻮﺘﺤﻣ ﻡﺍﺪﺨﺘﺳﺍ ﺪﻳﺮﺗ ﻲﺘﻟﺍ ﺔﻤﺋﺎﻘﻟﺍ .................................. List1
(26 ﻰﻟﺍ 1 ﺔﻤﺋﺎﻗ)2 ﺔﻨﻴﻌﻟﺍ ﺕﺎﻧﺎﻴﺒﻛ ﺎﻬﺗﺎﻳﻮﺘﺤﻣ ﻡﺍﺪﺨﺘﺳﺍ ﺪﻳﺮﺗ ﻲﺘﻟﺍ ﺔﻤﺋﺎﻘﻟﺍ ..................................List 2
(26 ﻰﻟﺍ 1 ﺔﻤﺋﺎﻗ ﻭﺍ 1 ) ﺩﺩﺮﺗ ...................................Freq
(26 ﻰﻟﺍ 1 ﺔﻤﺋﺎﻗ ﻭﺍ 1) 1 ﺔﻨﻴﻌﻟﺍ ﺩﺩﺮﺗ .................................Freq1
(26 ﻰﻟﺍ 1 ﺔﻤﺋﺎﻗ ﻭﺍ 1) 2 ﺔﻨﻴﻌﻟﺍ ﺩﺩﺮﺗ .................................Freq2
ﻲﻧﺎﻴﺑ ﺎﻤﺳﺭ ﻢﺳﺮﻳ ﻭﺍ ﺔﻴﺑﺎﺴﺣ ﺔﻴﻠﻤﻋ ﺬﻔﻨﺗ
..................................ﺬﻴﻔﻨﺗ
ﺔﻨﻴﻌﻟﺍ ﻂﺳﻮﺘﻣ
........................................o
1 ﺔﻨﻴﻌﻟﺍ ﻂﺳﻮﺘﻣ ......................................
o
1
2 ﺔﻨﻴﻌﻟﺍ ﻂﺳﻮﺘﻣ .......................................
o
2
(ﻲﺑﺎﺠﻳﺍ ﺢﻴﺤﺻ ﺩﺪﻋ ) ﺔﻨﻴﻌﻟﺍ ﻢﺠﺣ ........................................ n
(ﻲﺑﺎﺠﻳﺍ ﺢﻴﺤﺻ ﺩﺪﻋ) 1 ﺔﻨﻴﻌﻟﺍ ﻢﺠﺣ .......................................
n
1
(ﻲﺑﺎﺠﻳﺍ ﺢﻴﺤﺻ ﺩﺪﻋ) 2 ﺔﻨﻴﻌﻟﺍ ﻢﺠﺣ .......................................
n
2
(0 < p
0
< 1) ﺔﻌﻗﻮﺘﳌﺍ ﺔﻨﻴﻌﻟﺍ ﺔﺒﺴﻧ .......................................
p
0
ﺔﻨﻴﻌﻟﺍ ﺔﺒﺴﻧ ﺭﺎﺒﺘﺧﺍ ﻁﻭﺮﺷ .......................................
p
1
(ﺢﻴﺤﺻ ﺩﺪﻋ x 0 ﺔﻨﻴﻌﻟﺍ ﺔﻤﻴﻗ .............(Z ﺭﺎﺒﺘﺧﺍ ﺔﻣﺎﻋﺩ-1) x
(ﻲﺑﺎﺠﻳﺍ ﺢﻴﺤﺻ ﺩﺪﻋ ﻭﺍ 0 ) ﺕﺎﻧﺎﻴﺑ .............(Z ﻞﺻﺎﻓ ﺔﻣﺎﻋﺩ-1) x
(ﺢﻴﺤﺻ ﺩﺪﻋ x
1
0 ) 1 ﺔﻨﻴﻌﻠﻟ ﺕﺎﻧﺎﻴﺒﻟﺍ ﺔﻤﻴﻗ .......................................
x
1
(ﺢﻴﺤﺻ ﺩﺪﻋ x
2
0 ) 1 ﺔﻨﻴﻌﻠﻟ ﺕﺎﻧﺎﻴﺒﻟﺍ ﺔﻤﻴﻗ .......................................
x
2
(s
x
> 0) ﺔﻨﻴﻌﻠﻟ ﻱﺭﺎﻴﻌﳌﺍ ﻑﺍﺮﺤﻧﻻﺍ .......................................
s
x
(s
x
1
> 0) 1 ﺔﻨﻴﻌﻠﻟ ﻱﺭﺎﻴﻌﳌﺍ ﻑﺍﺮﺤﻧﻻﺍ ......................................
s
x
1
(s
x
2
> 0) 2 ﺔﻨﻴﻌﻠﻟ ﻱﺭﺎﻴﻌﳌﺍ ﻑﺍﺮﺤﻧﻻﺍ ......................................
s
x
2
(6 ﻰﻟﺍ 1 ﺔﻤﺋﺎﻗ) x ﺭﻮﶈﺍ ﺕﺎﻧﺎﻴﺒﻟ ﺔﻤﺋﺎﻗ ............................... ﺔﻤﺋﺎﻗX
(6 ﻰﻟﺍ 1 ﺔﻤﺋﺎﻗ) y ﺭﻮﶈﺍ ﺕﺎﻧﺎﻴﺒﻟ ﺔﻤﺋﺎﻗ ............................... ﺔﻤﺋﺎﻗY
(1 > C–ﻱﻮﺘﺴﻣ 0) ﺔﻘﺜﻟﺍ ﻯﻮﺘﺴﻣ ........................... C-ﻯﻮﺘﺴﻣ