User Manual

Table Of Contents
6-56
ﺔﻘﺜﻟﺍ ﻞﺻﺎﻓ k
ﺔﻘﺜﻟﺍ ﻞﺻﺎﻓ
(ﺮﺴﻳﻷﺍ ﺶﻣﺎﻬﻟﺍ) ﻲﻧﺩﻷﺍ ﺪﺤﻠﻟ ﺔﻘﺜﻟﺍ ﻞﺻﺎﻓ :ﺭﺎﺴﻳ
(ﻦﳝﻷﺍ ﺶﻣﺎﻬﻟﺍ ) ﻰﻠﻋﻷﺍ ﺪﺤﻠﻟ ﺔﻘﺜﻟﺍ ﻞﺻﺎﻓ :ﲔﳝ
Z ﻞﺻﺎﻓ ﺔﻨﻴﻋ-1
Z ﻞﺻﺎﻓ ﺔﻨﻴﻋ- 2
Z ﻞﺻﺎﻓ ﺔﻣﺎﻋﺩ-1
Z ﻞﺻﺎﻓ ﺔﻣﺎﻋﺩ- 2
t ﻞﺻﺎﻓ ﺔﻨﻴﻋ-1
(ﺔﻌﻤﺠﻣ) t ﻞﺻﺎﻓ ﺔﻨﻴﻋ- 2
t ﻞﺻﺎﻓ ﺔﻨﻴﻋ- 2
(ﺔﻌﻤﺠﻣ ﺮﻴﻏ)
( 0 C-ﻯﻮﺘﺴﻣ< 1 ) ﺔﻘﺜﻟﺍ ﻯﻮﺘﺴﻣ :C-ﻯﻮﺘﺴﻣ 1 − [C-ﻯﻮﺘﺴﻣ] =
α
ﻡﺎﻫ ﻯﻮﺘﺴﻣ :
α
ﻱﺭﺎﻴﻌﳌﺍ ﻲﻌﻴﺒﻄﻟﺍ ﻊﻳﺯﻮﺘﻠﻟ
α
/2 ﻰﻠﻋﺍ ﺔﻄﻘﻧ :Z (
α
/2)
df
ﺔﻳﺮﺣ ﺕﺎﺟﺭﺩ ﻊﻣ t ﻊﻳﺯﻮﺘﻟ
α
/2 ﻰﻠﻋﺍ ﺔﻄﻘﻧ :t
df
(
α
/2)
(ﻞﺻﺍﻮﺘﻣ ) ﻊﻳﺯﻮﺗ k
ﻊﻳﺯﻮﺗﺔﻴﻟﺎﻤﺘﺣﺍ ﺔﻓﺎﺜﻛﻲﻤﻛﺍﺮﺗ ﻊﻳﺯﻮﺗ
ﻲﻌﻴﺒﻃ ﻊﻳﺯﻮﺗ
πσ
2
p(x) =
1
e
2
2
σ
(x μ)
2
μ
(
> 0)
σ
p = p(x)dx
Upper
Lower
t - ﺐﻟﺎﻄﻟ ﻊﻳﺯﻮﺗ
p(x) =
×
Γ
Γ
× df
π
df+1
2
2
df
2
df + 1
df
x
2
1 +
χ
2
ﻊﻳﺯﻮﺗ
p(x) =
×
(x 0)
Γ
1
2
df
df
2
×
x
2
1
df
2
1
x
2
× e
F ﻊﻳﺯﻮﺗ
ndf
2
x
ddf
ndf
ndf
2
1
ddf
ndf × x
1 +
ndf + ddf
2
p(x) =
Γ
2
ndf + ddf
Γ
2
ndf
× Γ
2
ddf
(x 0)
o + Z( /2) · σ/
'
n
α
=ﻦﻴﻤﻳ ،ﺭﺎﺴﻳ
(o
1
o
2
) + Z( /2) σ /n
1
+ σ /n
2
2
1
2
2
α
=ﻦﻴﻤﻳ ،ﺭﺎﺴﻳ
x/n + Z( /2) 1/n · (x/n · (1 – x/n))
α
=ﻦﻴﻤﻳ ،ﺭﺎﺴﻳ
+ Z( /2) (x
1
/n
1
· (1 x
1
/n
1
))/n
1
+ (x
2
/n
2
· (1 x
2
/n
2
))/n
2
α
(x
1
/n
1
x
2
/n
2
)
=ﻦﻴﻤﻳ ،ﺭﺎﺴﻳ
o + t
n−1
( /2)
· s
x
/'n
α
=ﻦﻴﻤﻳ ،ﺭﺎﺴﻳ
s
p
= ((n
1
– 1)s
x
1
2
+ (n
2
– 1)s
x
2
2
)/(n
1
+ n
2
– 2)
(o
1
o
2
) + t
n
1
+n
2
−2
( /2) s
p
2
(1/n
1
+ 1/n
2
)
α
=ﻦﻴﻤﻳ ،ﺭﺎﺴﻳ
(o
1
o
2
) + t
df
( /2) s
x
1
2
/n
1
+ s
x
2
2
/n
2
α
df = 1/(C
2
/(n
1
– 1) + (1 – C)
2
/(n
2
– 1))
C = (s
x
1
2
/n
1
)/(s
x
1
2
/n
1
+ s
x
2
2
/n
2
)
=ﻦﻴﻤﻳ ،ﺭﺎﺴﻳ