User Manual
6-57
ﻊﻳﺯﻮﺗﺱﻮﻜﻌﻣ ﻲﻤﻛﺍﺮﺗ ﻊﻳﺯﻮﺗ
ﻲﻌﻴﺒﻃ ﻊﻳﺯﻮﺗ
p =  p(x)dx 
Upper
Lower
∫
p =  p(x)dx 
Lower
∞
∫
p =  p(x)dx 
Upper
–∞
∫
 ﺰﻛﺮﻣ = ﻞﻳﺫ  ﲔﳝ = ﻞﻳﺫ   ﺭﺎﺴﻳ = ﻞﻳﺫ    
 t  - ﺐﻟﺎﻄﻟ ﻊﻳﺯﻮﺗ
p =  p(x)dx 
Lower
∞
∫
χ 
2
  ﻊﻳﺯﻮﺗ
  F  ﻊﻳﺯﻮﺗ
(ﻞﺼﻔﻨﻣ) ﻊﻳﺯﻮﺗ  k
ﻊﻳﺯﻮﺗ
ﺔﻴﻟﺎﻤﺘﺣﺍ
ﻲﺋﺎﻨﺛ ﻊﻳﺯﻮﺗ
ﺕﺍﺭﺎﺒﺘﺧﺍ ﻦﻣ ﺩﺪﻋ  :
 n   
p(x) = nCxp
x
(1–p)
n – x
(x = 0, 1, ·······, n)
ﻲﻧﻮﺳﺍﻮﺑ ﻊﻳﺯﻮﺗ
(
μ 
 >  0  ) ﻲﻨﻌﺗ  :
 μ 
(x = 0, 1, 2, ···)
p(x) =
x!
e
– 
μ
 μ
×
x
ﻲﺳﺪﻨﻫ ﻊﻳﺯﻮﺗ
p(x)
= p(1– p)
x – 1
(x = 1, 2, 3, ···)
ﻲﺳﺪﻨﻫ ﻕﻮﻓ ﻊﻳﺯﻮﺗ
p(x) =
MCx × N – MCn – x
N
Cn
 (0   x  ﺢﻴﺤﺻ ﺩﺪﻋ) ﻥﺎﻜﺴﻟﺍ ﻦﻣ ﺔﺟﺮﺨﺘﺴﳌﺍ ﺮﺻﺎﻨﻌﻟﺍ ﺩﺪﻋ  :  n 
 (0   M  ﺢﻴﺤﺻ ﺩﺪﻋ) A ﺰﻣﺮﻟﺍ ﻲﻓ ﺔﻄﺒﺗﺮﳌﺍ ﺮﺻﺎﻨﻌﻟﺍ ﺩﺪﻋ  :  M 
  ( n    N , M    N  ﺢﻴﺤﺻ ﺩﺪﻋ) ﺮﺻﺎﻨﻌﻟﺍ ﺔﺒﺴﻧ ﺩﺪﻋ  :  N 
ﻊﻳﺯﻮﺗ
ﻲﻤﻛﺍﺮﺗ ﻊﻳﺯﻮﺗﺱﻮﻜﻌﻣ ﻲﻤﻛﺍﺮﺗ ﻊﻳﺯﻮﺗ
ﻲﺋﺎﻨﺛ ﻊﻳﺯﻮﺗ
p = 
Σ 
p(x)
x=0
X
p H 
Σ 
p(x)
x=0
X
ﻲﻧﻮﺳﺍﻮﺑ ﻊﻳﺯﻮﺗ
ﻲﺳﺪﻨﻫ ﻊﻳﺯﻮﺗ
p = 
Σ 
p(x)
x=1
X
p H 
Σ 
p(x)
x=1
X
ﻲﺳﺪﻨﻫ ﻕﻮﻓ ﻊﻳﺯﻮﺗ
p = 
Σ 
p(x)
x=0
X
p H 
Σ 
p(x)
x=0
X










