User Manual
6-43
f (x)dx = p
−∞
∫
Upper
f (x)dx = p
+∞
∫
Lower
f (x)dx = p
∫
Upper
Lower
.ﻞﺻﺎﻓ ﻞﻣﺎﻜﺗ ﻰﻠﻋ ﻝﻮﺼﺤﻠﻟ ﺔﻐﻴﺼﻟﺍ ﻩﺬﻫ ﻡﺪﺨﺘﺳﺍ ﻭ ﻝﺎﻤﺘﺣﻻﺍ ﺪﻳﺪﺤﺘﺑ ﻢﻗ
∞ = 1E99, – ∞ = –1E99 :ﻲﻟﺎﺘﻟﺍ ﻲﻓ ﺎﻣ ﻡﺍﺪﺨﺘﺳﺎﺑ ﻩﻼﻋﺍ ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺀﺍﺮﺟﺎﺑ ﺔﺒﺳﺎﳊﺍ ﻩﺬﻫ ﻡﻮﻘﺗ •
.ﺱﻮﻜﻌﳌﺍ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻲﻌﻴﺒﻄﻟﺍ ﻊﻳﺯﻮﺘﻠﻟ ﺔﻴﻧﺎﻴﺑ ﻡﻮﺳﺭ ﺪﺟﻮﺗ ﻻ •
t - ﺐﻟﺎﻃ ﻊﻳﺯﻮﺗ k
5(DIST) 2(t) 1(tPd) t - ﺐﻟﺎﻄﻟ ﻝﺎﻤﺘﺣﻻﺍ ﺔﻓﺎﺜﻛ u
x ﺔﻤﻴﻘﻟ( p ) ﺔﻓﺎﺜﻜﻟﺍ ﻝﺎﻤﺘﺣﺍ ﺐﺴﺤﻳ t – ﺐﻟﺎﻄﻟ ﻝﺎﻤﺘﺣﻻﺍ ﺔﻓﺎﺜﻛ
ﺞﺋﺎﺘﻧ ﺽﺮﻌﺗ ، ﺔﻤﺋﺎﻘﻟﺍ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ .ﺔﻤﺋﺎﻗ ﻭ ﺓﺩﺪﺤﻣ ﺓﺪﺣﺍﻭ
.ﺔﻤﺋﺎﻗ ﻞﻜﺷ ﻲﻓ ﺔﻤﺋﺎﻘﻟﺍ ﺮﺻﺎﻨﻋ ﻞﻜﻟ ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ
ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺞﺋﺎﺘﻧ ﺕﺎﺟﺮﺨﻣ ﺔﻠﺜﻣﺍ
ﺔﻤﺋﺎﻗ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ
( x ) ﺔﻤﻴﻗ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ ﻲﻧﺎﻴﺑ ﻢﺳﺭ ﻢﺳﺭﺍ
.ﺕﺎﻧﺎﻴﺒﻛ x - ﺔﻤﻴﻗ ﻝﺎﺧﺩﺍ ﻢﺘﻳ ﻭ ﺮﻴﻐﺘﻣ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ ﻂﻘﻓ ﺔﻴﻧﺎﻴﺒﻟﺍ ﻡﻮﺳﺮﻟﺍ ﻢﻋﺪﺗ •
5(DIST) 2(t) 2(tCd)
t - ﺐﻟﺎﻄﻟ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻊﻳﺯﻮﺘﻟﺍ u
t -ﺐﻟﺎﻄﻠﻟ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻝﺎﻤﺘﺣﻻﺍ ﺐﺴﺤﻳ t - ﺐﻟﺎﻄﻟ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻊﻳﺯﻮﺘﻟﺍ
.ﻰﻠﻋﻻﺍ ﻭ ﻲﻧﺩﻻﺍ ﺪﳊﺍ ﲔﺑ ﻊﻘﻳ t ﺐﻟﺎﻃ ﻊﻳﺯﻮﺘﻟ
ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺞﺋﺎﺘﻧ ﺕﺎﺟﺮﺨﻣ ﺔﻠﺜﻣﺍ
ﺔﻤﺋﺎﻗ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ
( x ) ﺔﻤﻴﻗ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ ﻲﻧﺎﻴﺑ ﻢﺳﺭ ﻢﺳﺭﺍ
ﻰﻠﻋﻻﺍ ﺪﳊﺍ :ﻞﻳﺫ
ﻞﻣﺎﻜﺘﻠﻟ ﻦﳝﻻﺍ
.ﻞﺻﺎﻔﻟﺍ
ﻲﻧﺩﻻﺍ ﺪﳊﺍ :ﻞﻳﺫ
ﻞﻣﺎﻜﺘﻠﻟ ﺮﺴﻳﻻﺍ
.ﻞﺻﺎﻔﻟﺍ
ﺎﻴﻧﺪﻟﺍ ﺩﻭﺪﳊﺍ :ﻞﻳﺫ
ﺎﻴﻠﻌﻟﺍ ﻭ ﻰﻄﺳﻮﻟﺍ
.ﻞﺻﺎﻔﻟﺍ ﻞﻣﺎﻜﺘﻠﻟ










