Isiqondiso kumsebenzisi
Table Of Contents
- Okuqukethwe
- Ngaphambi Kokusebenzisa Umshini Wokubala
- Izindlela Zokusebenza Zomshini Wokubala Kanye Nokuhlelwa Komshini Wokubala
- Ukubala Okuyisisekelo
- Ukufaka Izimpawu Zezibalo Nama Nani
- Izibalo Ze-Arithmetic
- Izibalo Ezingamaqhezu
- Izibalo Zamaphesenti
- Izinga, Umzuzu, Umzuzwana (Sexagesimal)
- Izitatimende Ezikaningi (fx-82MS/fx-85MS/fx-300MS/fx-350MS kuphela)
- Ukusebenzisa Ukwaziswa Wezobunjiniyela
- Umlando Wezibalo Nokuphinde Uveze
- Ukusebenzisa Ukubenza Kwesigcina-lwazi
- Izibalo Ngokusebenzisa I-function
- Pi (π), Natural Logarithm Base e (Umsuka Wokubala We-Logarithm Yemvelo e)
- Imisebenzi Ye-Trigonometric, Imisebenzi Ye-Inverse Trigonometric
- Imisebenzi Ye-Hyperbolic, Imisebenzi Ye-Inverse Hyperbolic
- Engele Ukuguqulwa Kweyunithi
- Imisebenzi Ye-Exponential, Imisebenzi Ye-Logarithmic
- Ukusebenza Kwamandla Nokusebenza Komsuka Wamandla
- Ukuguqulwa Kwesanxande - Polar Coordinate
- I-factorial (!)
- Inombolo Engahleliwe (Ran#)
- I-inteksi Ehleliwe (RanInt#) (fx-220 PLUS kuphela)
- Uhlelo (nPr) Nokuhlanganiswa (nCr)
- Ukuyisa Inombolo Engaziwa Kwinombolo Ephelele Eseduze (Rnd)
- Ukusebenzisa Indlela Yokubala
- Ulwazi Lwezobuchwepheshe
Imisebenzi Ukwaziswa Kokufaka
e
x
-9.999999999 × 10
99
≦ x ≦ 230.2585092
√ x
0 ≦ x < 1 × 10
100
x
2
| x | < 1 × 10
50
x
-1
| x | < 1 × 10
100
; x ≠ 0
3
√ x
| x | < 1 × 10
100
x ! 0 ≦ x ≦ 69 ( x iyinombolo egcwele)
n P r
0 ≦ n < 1 × 10
10
, 0 ≦ r ≦ n ( n , r izinombolo
ezigcwele)
1 ≦ { n !/( n - r )!} < 1 × 10
100
n C r
0 ≦ n < 1 × 10
10
, 0 ≦ r ≦ n ( n , r izinombolo
ezigcwele)
1 ≦ n !/ r ! < 1 × 10
100
noma 1 ≦ n !/( n - r )! < 1 ×
10
100
Pol( x , y )
| x |, | y | ≦ 9.999999999 × 10
99
√
x
2
+ y
2
≦ 9.999999999 × 10
99
Rec( r , θ )
0 ≦ r ≦ 9.999999999 × 10
99
θ : Kuyafana no-sin x
°’ ”
°’ ”
←
a ° b ’ c ”: | a |, b , c < 1 × 10
100
; 0 ≦ b , c
Ukubonisa kwamanani esibili kuncike ephutheni
lika-±1 endaweni yesibili yedesimali.
| x | < 1 × 10
100
Idesimali ↔ Ama-Conversions e-Sexagesimal
0°0°0° ≦ | x | ≦ 9999999°59°
x
y
x > 0: -1 × 10
100
< y log x < 100
x = 0: y > 0
x < 0: y = n ,
1
2 n +1
( n iyinombolo egcwele)
Nokho: -1 × 10
100
< y log | x | < 100
51