User Manual
6-57
  Distribution  
  Inverse Cumulative Distribution  
 Normal 
Distribution 
p =  p(x)dx 
Upper
–∞
∫
p =  p(x)dx 
Lower
∞
∫
p =  p(x)dx 
Upper
Lower
∫
      tail = Left    tail = Right    tail = Central 
 Student- 
t  
Distribution 
p =  p(x)dx 
Lower
∞
∫
 χ 
2 
 Distribution 
 F   Distribution 
k Distribution (Discrete)
  Distribution   Probability  
 Binomial Distribution 
p(x) = 
nCxp
x
(1–p)
n – x
(x = 0, 1, ·······, n)
 n  : number of trials 
 Poisson Distribution 
(x = 0, 1, 2, ···)
p(x) =
x!
e
– 
μ
 μ
×
x
 μ  
: mean (  
μ 
 >  0) 
 Geometric Distribution 
p(x)
= p(1– p)
x – 1
(x = 1, 2, 3, ···)
 Hypergeometric 
Distribution 
p(x) =
MCx × N – MCn – x
N
Cn
 n  :  Number of elements extracted from population (0   x  integer) 
 M  : Number of elements contained in attribute A (0   M  integer) 
 N  : Number of population elements ( n    N , M    N  integer) 
  Distribution  
  Cumulative Distribution  
  Inverse Cumulative Distribution  
 Binomial Distribution 
p = 
Σ 
p(x)
x=0
X
p H 
Σ 
p(x)
x=0
X
 Poisson Distribution 
 Geometric Distribution 
p = 
Σ 
p(x)
x=1
X
p H 
Σ 
p(x)
x=1
X
 Hypergeometric 
Distribution 
p = 
Σ 
p(x)
x=0
X
p H 
Σ 
p(x)
x=0
X










