User Manual
6-56
k Confidence Interval
  Confidence Interval  
 Left: confidence interval lower limit (left edge)
  Right: confidence interval upper limit (right edge) 
 1-Sample 
Z  Interval 
Left, Right
 = o + Z( /2) · σ/
'
n
α
 2-Sample Z  Interval 
Left, Right = (o
1
 – o
2
) + Z( /2) σ /n
1
 + σ /n
2
 2
1
 2
2
α
 1-Prop 
Z  Interval 
Left, Right = x/n + Z( /2) 1/n · (x/n · (1 – x/n))
α
 2-Prop 
Z  Interval 
Left, Right = (x
1
/n
1
 – x
2
/n
2
)
+ Z( /2) (x
1
/n
1 
· (1 – x
1
/n
1
))/n
1
 + (x
2
/n
2 
· (1 – x
2
/n
2
))/n
2
α
 1-Sample 
t  Interval 
Left, Right = o + t
n−1
( /2)
· s
x
/'n
α
 2-Sample 
t  Interval 
(pooled) 
Left, Right = (o
1
 – o
2
) + t
n
1
+n
2
−2 
( /2) s
p
2
(1/n
1
 + 1/n
2
)
s
p
= ((n
1
 – 1)s
x
1
2
 + (n
2
 – 1)s
x
2
2
)/(n
1
 + n
2
 – 2)
α
 2-Sample 
t  Interval 
(not pooled) 
Left, Right = (o
1
 – o
2
) + t
df 
( /2) s
x
1
2
/n
1
 + s
x
2
2
/n
2
df = 1/(C
2
/(n
1
 – 1) + (1 – C)
2
/(n
2
 – 1))
α
C = (s
x
1
2
/n
1
)/(s
x
1
2
/n
1
 + s
x
2
2
/n
2
)
 α  
: level of significance 
α 
 = 1 − [C-Level ] C-Level : confidence level (0   C-Level   < 1)
 Z  ( 
α 
/2): upper 
α 
/2 point of standard normal distribution
 t  
df 
 ( 
α 
/2): upper 
α 
/2 point of t  distribution with df  degrees of freedom
k Distribution (Continuous)
  Distribution   Probability Density  
  Cumulative Distribution  
 Normal 
Distribution 
πσ
2
p(x) = 
1
e
–
2 
2
σ
(x – μ)
2
μ
(
> 0)
σ
p =  p
(x)dx 
Upper
Lower
∫
 Student- t  
Distribution 
p(x) = 
×
Γ
Γ
 × df
π
–
 df+1
2
2
df
2
df + 1
df
x
2
1 +
 χ 
2 
 Distribution 
p(x) = 
×
(x  0)
Γ
1
2
df
df
2
×
x    
2
1
df
2
–1
x
2
–
 × e
 F   Distribution 
ndf
2
x
ddf
ndf
ndf
2
–1
ddf
ndf × x
1 +
ndf + ddf
2
p(x) = 
–
Γ
2
ndf + ddf
Γ
2
ndf
 × Γ
2
ddf
(x  0)










