User Manual
6-57
ﻊﻳﺯﻮﺗﺱﻮﻜﻌﻣ ﻲﻤﻛﺍﺮﺗ ﻊﻳﺯﻮﺗ
ﻲﻌﻴﺒﻃ ﻊﻳﺯﻮﺗ
p = p(x)dx
Upper
Lower
∫
p = p(x)dx
Lower
∞
∫
p = p(x)dx
Upper
–∞
∫
ﺰﻛﺮﻣ = ﻞﻳﺫ ﲔﳝ = ﻞﻳﺫ ﺭﺎﺴﻳ = ﻞﻳﺫ
t - ﺐﻟﺎﻄﻟ ﻊﻳﺯﻮﺗ
p = p(x)dx
Lower
∞
∫
χ
2
ﻊﻳﺯﻮﺗ
F ﻊﻳﺯﻮﺗ
(ﻞﺼﻔﻨﻣ) ﻊﻳﺯﻮﺗ k
ﻊﻳﺯﻮﺗ
ﺔﻴﻟﺎﻤﺘﺣﺍ
ﻲﺋﺎﻨﺛ ﻊﻳﺯﻮﺗ
ﺕﺍﺭﺎﺒﺘﺧﺍ ﻦﻣ ﺩﺪﻋ :
n
p(x) = nCxp
x
(1–p)
n – x
(x = 0, 1, ·······, n)
ﻲﻧﻮﺳﺍﻮﺑ ﻊﻳﺯﻮﺗ
(
μ
> 0 ) ﻲﻨﻌﺗ :
μ
(x = 0, 1, 2, ···)
p(x) =
x!
e
–
μ
μ
×
x
ﻲﺳﺪﻨﻫ ﻊﻳﺯﻮﺗ
p(x)
= p(1– p)
x – 1
(x = 1, 2, 3, ···)
ﻲﺳﺪﻨﻫ ﻕﻮﻓ ﻊﻳﺯﻮﺗ
p(x) =
MCx × N – MCn – x
N
Cn
(0 x ﺢﻴﺤﺻ ﺩﺪﻋ) ﻥﺎﻜﺴﻟﺍ ﻦﻣ ﺔﺟﺮﺨﺘﺴﳌﺍ ﺮﺻﺎﻨﻌﻟﺍ ﺩﺪﻋ : n
(0 M ﺢﻴﺤﺻ ﺩﺪﻋ) A ﺰﻣﺮﻟﺍ ﻲﻓ ﺔﻄﺒﺗﺮﳌﺍ ﺮﺻﺎﻨﻌﻟﺍ ﺩﺪﻋ : M
( n N , M N ﺢﻴﺤﺻ ﺩﺪﻋ) ﺮﺻﺎﻨﻌﻟﺍ ﺔﺒﺴﻧ ﺩﺪﻋ : N
ﻊﻳﺯﻮﺗ
ﻲﻤﻛﺍﺮﺗ ﻊﻳﺯﻮﺗﺱﻮﻜﻌﻣ ﻲﻤﻛﺍﺮﺗ ﻊﻳﺯﻮﺗ
ﻲﺋﺎﻨﺛ ﻊﻳﺯﻮﺗ
p =
Σ
p(x)
x=0
X
p H
Σ
p(x)
x=0
X
ﻲﻧﻮﺳﺍﻮﺑ ﻊﻳﺯﻮﺗ
ﻲﺳﺪﻨﻫ ﻊﻳﺯﻮﺗ
p =
Σ
p(x)
x=1
X
p H
Σ
p(x)
x=1
X
ﻲﺳﺪﻨﻫ ﻕﻮﻓ ﻊﻳﺯﻮﺗ
p =
Σ
p(x)
x=0
X
p H
Σ
p(x)
x=0
X










