User Manual
6-43
f (x)dx = p
−∞
∫
Upper
f (x)dx = p
+∞
∫
Lower
f (x)dx = p
∫
Upper
Lower
.ﻞﺻﺎﻓ ﻞﻣﺎﻜﺗ ﻰﻠﻋ ﻝﻮﺼﺤﻠﻟ ﺔﻐﻴﺼﻟﺍ ﻩﺬﻫ ﻡﺪﺨﺘﺳﺍ ﻭ ﻝﺎﻤﺘﺣﻻﺍ ﺪﻳﺪﺤﺘﺑ ﻢﻗ 
∞  = 1E99, – ∞  = –1E99  :ﻲﻟﺎﺘﻟﺍ ﻲﻓ ﺎﻣ ﻡﺍﺪﺨﺘﺳﺎﺑ ﻩﻼﻋﺍ ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺀﺍﺮﺟﺎﺑ ﺔﺒﺳﺎﳊﺍ ﻩﺬﻫ ﻡﻮﻘﺗ  •  
.ﺱﻮﻜﻌﳌﺍ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻲﻌﻴﺒﻄﻟﺍ ﻊﻳﺯﻮﺘﻠﻟ ﺔﻴﻧﺎﻴﺑ ﻡﻮﺳﺭ ﺪﺟﻮﺗ ﻻ  •  
 t  - ﺐﻟﺎﻃ ﻊﻳﺯﻮﺗ  k
 5(DIST)  2(t)  1(tPd)  t  - ﺐﻟﺎﻄﻟ ﻝﺎﻤﺘﺣﻻﺍ ﺔﻓﺎﺜﻛ u
  x   ﺔﻤﻴﻘﻟ( p  ) ﺔﻓﺎﺜﻜﻟﺍ ﻝﺎﻤﺘﺣﺍ ﺐﺴﺤﻳ  t   – ﺐﻟﺎﻄﻟ ﻝﺎﻤﺘﺣﻻﺍ ﺔﻓﺎﺜﻛ 
 ﺞﺋﺎﺘﻧ ﺽﺮﻌﺗ ، ﺔﻤﺋﺎﻘﻟﺍ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ .ﺔﻤﺋﺎﻗ ﻭ ﺓﺩﺪﺤﻣ ﺓﺪﺣﺍﻭ
.ﺔﻤﺋﺎﻗ ﻞﻜﺷ ﻲﻓ ﺔﻤﺋﺎﻘﻟﺍ ﺮﺻﺎﻨﻋ ﻞﻜﻟ ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ
ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺞﺋﺎﺘﻧ ﺕﺎﺟﺮﺨﻣ ﺔﻠﺜﻣﺍ 
 ﺔﻤﺋﺎﻗ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ  
( x ) ﺔﻤﻴﻗ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ ﻲﻧﺎﻴﺑ ﻢﺳﺭ ﻢﺳﺭﺍ
.ﺕﺎﻧﺎﻴﺒﻛ  x  - ﺔﻤﻴﻗ ﻝﺎﺧﺩﺍ ﻢﺘﻳ ﻭ ﺮﻴﻐﺘﻣ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ ﻂﻘﻓ ﺔﻴﻧﺎﻴﺒﻟﺍ ﻡﻮﺳﺮﻟﺍ ﻢﻋﺪﺗ  •  
5(DIST)  2(t)  2(tCd) 
  t  - ﺐﻟﺎﻄﻟ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻊﻳﺯﻮﺘﻟﺍ u
  t  -ﺐﻟﺎﻄﻠﻟ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻝﺎﻤﺘﺣﻻﺍ ﺐﺴﺤﻳ  t  - ﺐﻟﺎﻄﻟ ﻲﻤﻛﺍﺮﺘﻟﺍ ﻊﻳﺯﻮﺘﻟﺍ 
 .ﻰﻠﻋﻻﺍ ﻭ ﻲﻧﺩﻻﺍ ﺪﳊﺍ ﲔﺑ ﻊﻘﻳ  t   ﺐﻟﺎﻃ ﻊﻳﺯﻮﺘﻟ
ﺔﻴﺑﺎﺴﳊﺍ ﺔﻴﻠﻤﻌﻟﺍ ﺞﺋﺎﺘﻧ ﺕﺎﺟﺮﺨﻣ ﺔﻠﺜﻣﺍ 
 ﺔﻤﺋﺎﻗ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ
 ( x ) ﺔﻤﻴﻗ ﺪﻳﺪﲢ ﻢﺘﻳ ﺎﻣﺪﻨﻋ ﻲﻧﺎﻴﺑ ﻢﺳﺭ ﻢﺳﺭﺍ
 ﻰﻠﻋﻻﺍ ﺪﳊﺍ :ﻞﻳﺫ
 ﻞﻣﺎﻜﺘﻠﻟ ﻦﳝﻻﺍ
.ﻞﺻﺎﻔﻟﺍ
 ﻲﻧﺩﻻﺍ ﺪﳊﺍ :ﻞﻳﺫ
 ﻞﻣﺎﻜﺘﻠﻟ ﺮﺴﻳﻻﺍ
.ﻞﺻﺎﻔﻟﺍ
 ﺎﻴﻧﺪﻟﺍ ﺩﻭﺪﳊﺍ :ﻞﻳﺫ
 ﺎﻴﻠﻌﻟﺍ ﻭ ﻰﻄﺳﻮﻟﺍ
.ﻞﺻﺎﻔﻟﺍ ﻞﻣﺎﻜﺘﻠﻟ










