Ck ٫ዓࣜಹ fx-3650P II ᅋํடร ྩఛഩഒीᆅཌሂ http://edu.casio.
ኼӄ ݮဩఀၭӊ DBTJP դ౹ă • ᇀෳᅋդ౹ഋᆪڣᅋํடรă • ഋटດүߘࠝLjჾӯࡍၖე෫෫Ըሙ ) үૠӄ ᅋ *ă! ᇀჾ࿒ཌሂნ৹ჾᆪڣᅋํடรă! iuuq;00xxx/dbtjp/dpn/do0tvqqpsu0nbovbm0 k ᇀฑ״ෳᅋӊࣜಹቐ /// ෳᅋࣜಹቐLjटү৷ဂ࿒ ࡤڑԌട࿒Ljഹࡍटү৷߈ڊ ࣜفಹوҿஎLjᅚ༐ຑă A ࣜಹෳᅋ༾ӛࡍ /// ࣜಹوҿஎട࿒ү৷LjԌटದቺူໍᇀቁஎă k ࠨटࣜಹݒཛྷֽയෛኴຢ ეෳࣜಹوහብ۵ባದֽയෛኴຢ෫Ljഋቖှ࿒ะ ՃዷăഋኢᄌLjױՃዷࡱटഅׅ،ಹቲوຑᅘ൛DŽڢ ،ಹLjӰફ،ಹLjؖѦ،ಹLj༇ࣜࣜჅӊืয ࣆ֔ၠืযDž ă! !9(CLR)3(All)w Ck-1
k ߔᅢӊํடร • ӊᅋํடรቲࡥوஎࣆՏ༐DŽऒٌࣝࠟDž४ཛྷ۶ቐᅋLj ৹࢙ᅳದؠӹو෯࣠ᅘຑԥༀă • ӊํடรቲو൛ᅘݢޚLjูԥှቌă • ྩఛࣜࢲާ๖DŽDBTJP!Dpnqvufs!Dp/-!Mue/Džڶᅢᄜ ଼ࢪෳᅋӊդ౹ࣆದݛऔۚـቤࢪᄧಲوൌࠨ໎ผوĂ ࣺेوĂݛࢪوߔوຈࠀԥݘൌࠨᇖൌăױ༶Lj ྩఛࣜࢲާ๖DŽDBTJP!Dpnqvufs!Dp/-!Mue/Džڶᅢൌࠨٞ ൻሣᄜෳᅋӊդ౹ࣆದݛऔຑᄧಲوൌࠨቸ੮وຏెԥ ݘᇖൌă Ѡഩၙቌ • ഋटդ౹ĂҪኰԮүߘᇀᄬᅟۛྐۨوࣆٜ۽ă 危险 ӹ൲ྐญױӶ६ှྥՃዷLj৹ـቤᆗ ๘ཊࢪቺටཕૅو॰ă ● ऄ၂٫֠ቲو־ფԥී൩Ⴇ෫Ljഋ࣊Գടჾ ࿒ؑă 2/!ԥე൞ႧLj࣊ᅋഅๆ֭࿄ă 3/!࣊টყተલă൲܅ൌԥߘLj৹࢙ᇒ֑டă Ck-2
警告 ӹ൲ྐญױӶ६ှྥՃዷLj৹ـቤᆗ ๘ཊࢪݘቺටă ● ഋट٫֠ብᅢᄬᅟۛྐۨوࣆٜ۽ăཆქᄬᅟۛ ԥීྥ෭Ljഋ࣊টყተલă ● ٫֠ෳᅋྥؓۨ۽෫Lj࢙ᇒ֑٫֠ფـቤቾཙྍ ຈࢪᇒ֑٫֠ಈઽـቤࢨᆼࢪᄌ༶ටࠀăᄜױഋႛ ޏዱฒჾ࿒ă • ഋኢᄌࣁ၂ ) LJࠧljوշဂ *Ljቁവኰ൩ă • ഋྡྷෳᅋӊࢲಹསቚوڊ٫֠ă ● ഋԥეڶ٫֠६ှ֬٫Ă՚ॖჾࣆದຓ࢙ـቤଁڮ وൌࠨှཛྷă ● ഋྡྷटӊࢲಹࢪ٫ࣩ֠െࢪڌ൩ࢨቲăܱᇘ৹ෳ ࢲಹಈઽـቤࢨᆼࢪᄌ༶ටࠀă 注意 ӹ൲ྐญױӶ६ှྥՃዷLj৹ـቤᆗ ถටࣆྡ౹ຈටă ● ߔᅢಃு • ഋྡྷᅋѢႅࢪቺࢯფॹಃăܱᇘფॹಃ وԍઓ৹ಈઽLjـቤᄌ༶ටࠀă • ფॹಃಈઽ෫Ljഋྡྷಃᄑو־ფă • ԥීྥ෭ಃுᄑو־ფ෫LjᄮଷණุਊԌ࣊ট ყተલă • Ⴇॸࢪ౦ܴԥීेفಃுᄑو־ფ෫Ljഋ࿘ᅋ അๆ֭࿄ባඵ 26 ܖትჾණLjഹࡍ࣊টყተલă Ck-3
Ճዷၙቌ • 即使计算器运行正常,也应至少每三年 (LR44 (GPA76)) 更换一次电池。 ছ٫֠৹࢙ფLjࣜڶۚಹᇒ֑ຈࠀԌෳದդ ූ߆ሓăഋྡྷटছ٫֠ჯૠᇀࣜಹቲă٫֠༾ഩୣ ᅘ٫෫Ljഋྡྷᆿฎ༐ෳᅋࣜಹă • 配备的电池在运输和存放期间可能会产生轻微放电。因 此,更换时间可能会比正常电池寿命结束时间要早。 • 请勿对本产品使用镍氢电池 * 或任何其他使用镍作为材 料的电池。电池和产品规格不兼容可能会导致电池寿命 缩短并使产品发生故障。 • 电池电力不足会造成存储内容损坏或完全丢失。请务必 保留所有重要数据的书面记录。 • 请避免在超出温度极限、湿度过高和灰尘过多的区域使 用和存放计算器。 • 切勿过度撞击、挤压或弯曲计算器。 • 请勿尝试拆卸计算器。 • 请使用柔软的干布清洁计算器的外部。 • 无论何时丢弃计算器或电池,请确保遵循您所在地区的 法律和法规要求。 • 请务必将所有用户文件妥善保管以便日后需要时查阅。 +!ӊฐՋቲෳᅋާو๖ࠧդ౹ண֎৹กާޔޕ๖ࠧդ౹ ຑᅘሣوኢՋඨӶࢪඨӶă Ck-4
ଆ ኼӄ!//////////////////////////////////////////////////////////////////// 2 Ѡഩၙቌ!//////////////////////////////////////////////////////////////////// 3 Ճዷၙቌ!//////////////////////////////////////////////////////////////////// 5 ᇀ६ှࣜቐ ///!///////////////////////////////////////////// 7 ࣜனࠧහብ!///////////////////////////////////////////////////////// 9 ࠧืوพ൩!/////////////////////////////////////////////////// 22 ࢱӊࣜ!////////////////////////////////////////////////////////////////// 27 ࣜઈࣆՓᆪ!//
ᇀ६ှࣜቐ /// k ࣜಹوࢲ Ѣ Oăࣜಹट६൩ණࢲߔ״෫ࣜوன ) ٞ 9 ო *ă A ಃڶӔٻوڪॎ ߷ࡥஎණوዖܻௗჾഅLjഋٻॎಃڶوӔڪă 2/!Ѣ !N)TFUVQ*db)Dpousbtu*ă L I GHT DARK • ױ෫ڶӔٻڪॎࡥஎ࢙־ă CASIO 3/!ᅋ d!ࠧ e!ٻॎಃڶوӔڪă 4/!හڊ༾ӛࡍLjѢ A!ࢪ !p)FYJU*ă ኢ صѢ ,!ऒ־ࣜوனԵة෫Ljఀࡱ৹ჾෳᅋ +!ࠧ -!ٻॎڶӔڪă ቺეƽ ࣯ٻሿಃڶӔڪLjԌསݢජ৹ڣ၂Ljᇘ࠶ᅘ৹ ก٫ԥăഋࡳޚ٫֠ă A ࣜಹࢲߔو Ѣ !A)PGG*ă ߔӡࣜಹو٫ᆚࡍLj࿒઼ืযԥ࢙ڌă! • ࣜனࠧහብDŽٞ 9 ოDž • ؖѦ،ಹDŽٞ 32 ოDž Ăڢ،ಹDŽٞ 34 ოDž Ăჾࣆ Ӱફ،ಹDŽٞ 35 ოDžቲืوয Ck-6
k ऒӶࣝ M– x! A M 8 LOGIC DT CL ޢ Ⴁඇ ࠨቖှޢݡ 1 M+ ! 2 M– ྲྀዖ ǖዘࡾඇ Ѣ !!ࡍѢױऒă 3 M ྲྀዖ ǖࡆඇ Ѣ a!ࡍѢױऒă 4 DT ྲྀዖ ǖඇ ᇀ TE ࢪ SFH னቲLjѢױऒă 5 CL ྲྀዖ ǖዘࡾඇ ᇀ TE ࢪ SFH னቲLj ਢ ǖඇ Ѣ !!ࡍѢױऒă 6 ∠ ྲྀዖ ǖዘࡾඇ ᇀ DNQMY னቲLjѢ !! ਢ ǖዏඇ ࡍѢױऒă 7 A ྲྀዖ ǖࡆඇ ਢ ǖଖඇ 8 LOGIC ྲྀዖ ǖଖඇ Ѣױऒă Ѣ a!ࡍѢױऒDŽӰફ BDž ă ᇀ CBTF னቲLjѢױऒă ᇀ CBTF னቲLjѢױऒă k ࡥஎ A พ൩ӹؕԌࣜॕ߷ ӊࣜಹ৹ᇀༀქࡥޔஎණༀ෫ఀพ൩وӹؕࣆࣜ ॕ߷ă ! พ൩ӹؕ 2× ( 5+ 4 ) – 2× - 3 ! ࣜॕ߷ 24 Ck-7
A ܻࠟ ־ᇀࣜಹಃණو࿒ะܻࠟӹᇀࣜوனLj ࣜಹوහብࣆࣜ߹ٌ֔ăᇀӊํடรቲLj Đಶđქ װᅋᅢӹქ־ܻࠟޔᇀࡥஎණLjۚĐॖׅđქװᇘӹ ದဋă సӫو۶ࡥஎӹ 7!ܻࠟă! ࣜனࠧහብ k ࣜனوၭᇗ ӊࣜಹޮᅘቸĐࣜனđ ă 2/!!Ѣ ,ă • ࣜனԵ־ةă • ࣜனԵةᅘࡥޔஎăѢ ,!६ှၭࡳăෳᅋ d ࠧ e ნ৹ၭࡳԵࡥةஎă COMP CMPLX BASE SD REG 1 4 5 2 3 PRGM 6 3/!!ቖှ࿒ะՃዷቐქၭᇗຑၖეࣜوனă b!)DPNQ*;!DPNQDŽᆱDž c!)DNQMY*;!DNQMYDŽืݒDž d!)CBTF*;!CBTFDŽࢱ!ื !* e!)TE*;!TEDŽةӰફ༇ࣜDž f!)SFH*;!SFHDŽใӰફ༇ࣜDž g!)QSHN*;!QSHNDŽ֔ၠDž • Ѣ b ባ g ืوዖऒ৹ၭᇗᄮனLjྐଥ وԵࡥةஎཛྷࠨă Ck-8
k ࣜಹහብ ࣜಹහብ৹ᅋᅢైብพ൩ࠧพ־හڊĂࣜԸืࣆದຓ හڊăහብ৹ෳᅋහብࡥஎ६ှైብLjѢ !,)TFUVQ* ऒ৹ོ܃හብࡥஎăޮᅘޔහብࡥஎLjᅋ d ࠧ e ৹ ᇀದࣺ६ှၭࡳă A ऻوةڪቚڊ π !࡙!>!ڪ211 ҇ڪܖ :1˚!>!Ċ 3 ऻةڪ ቖှױऒՃዷ ǖ ڪ !,!b!)Efh* ࡙ڪ !,!c!)Sbe* ҇ڪܖ !,!d!)Hsb* A ืوቚڊ ቚื ቖှױऒՃዷ ǖ ဏืื !,!e!b!)Gjy*a!)1* ባ! j!):* ᅘပื !,!e!c!)Tdj*b!)2* ባ! j!):*-!a!)21* ቚื۶ཙ !,!e!d!)Opsn*b!)Opsn2*!ࢪ c)!Opsn3* ࿒எढ़මࣜॕ߷กࠨޗযఀቚوڊහڊ६ှوă! • ޗযఀቚوڊဏืืDŽGjyDžفগဏืăࣜ ॕ߷Ӈල൩فቚوڊဏืืණă ۶ઋ ǖ !100 ÷ 7 = 14.
• ᅋ Tdj ቚڊષᅘပืࡍLjࣜॕ߷ෳᅋᅘပืࣆ 21 ืوᄮ֓۽६ှăࣜॕ߷Ӈල൩فቚوڊ ืණă ۶ઋ ǖ! 1 ÷ 7 = 1.4286 × 10–1 (Sci = 5) • ၭᇗ Opsn2 ࢪ Opsn3 ࡍLjࣜصॕ߷ᇀ࿒۶ཙቐ෫Lj ದटჾቚืࣝืۨă Norm1: 10–2 > 앚x앚, 앚x앚 > 1010 Norm2: 10–9 > 앚x앚, 앚x앚 > 1010 ۶ઋ ǖ!1 ÷ 200 = 5. × 10–3 (Norm1) 0.
k ࣜனࠧහብوഅׅ ቖှ࿒ะՃዷ৹അׅࣜوனࣆຑᅘහብLjԌटࣜ ಹֽࡧཛྷ࿒ైብă! ࣜன!///////////////////////////DPNQDŽᆱனDž ऻ!ةڪ///////////////////////////EfhDŽڪDž ቚื!///////////////////////////Opsn2 ืܖြ!///////////////////////////bc0d! DŽืܖ؞Dž ืݒြ!///////////////////////////a,biDŽቓऻዸӶDž ! ౷ଔහ!ڊ///////////////////////////GsfrPoDŽ౷ଔಶDž ቖှ࿒ะऒՃዷ৹അׅࣜனࣆහብă !9(CLR)2(Setup)w ԥഅׅࣜಹوහڊ෫LjഋᇀණะՃዷቲѢ A!ۚԥѢ wă ࠧืوพ൩ k وพ൩ ӊࣜಹ৹ဃฐဢქჅพ൩LjԌѢ w ቖှăࣜಹ ዔڑৈࣩۨڊĂऋۨĂ֓ۨĂׅۨĂࠉืࣆਸ਼ࠟوቁവᅍ ࿘๋ၠă ۶ઋ ǖ !2 × (5 + 4) – 2 ×
A ؞ਸ਼ࠟ৶ၳࠉืوพ൩ )tjo-!dpt-!'LjٌDž ӊࣜಹ৹พ൩࿒઼؞ਸ਼ࠟو৶ၳࠉืăഋኢᄌLjᇀพ൩ ԸืࡍLjӤၙѢ ) ߔӡਸ਼ࠟă sin(, cos(, tan(, sin–1(, cos–1(, tan–1(, sinh(, cosh(, tanh(, sinh–1(, cosh–1(, tanh–1(, log(, ln(, e^(, 10^(, '(, 3'(, Abs(, Pol(, Rec(, arg(, Conjg(, Not(, Neg(, Rnd(, ∫(, d/dx( ۶ઋ ǖ !sin 30 = ( ) s30)w s i n 30 05 A ֓ࠟوෛଞ ֓ࠟ৹ჾᇀ࿒ะഉਦ࿒ෛଞă • ᇀਸ਼ࠟቐǖ3!ġ!)6!,!5* • ᇀ؞ਸ਼ࠟو৶ၳࠉืቐǖ3!ġ!tjo)41*-!3!ġ!')4* • ᇀብܻࠟDŽҪਸ਼ࠟݘDžቐǖ3!ġ!i234 • ᇀӰફணĂիืࢪࢲืቐǖ31!ġ!B-!3!ġ!π ቺეƽ ߷ቖှҪࠆׅۨᆱࠧෛଞ֓ࠟۨ֓وᆱࣜوLjᇘ ࢙࿒எو۶ઋຑዔڑՏ൩ਸ਼ࠟă • ෛଞਸ਼ࠟቐࢪߔਸ਼ࠟቐ
• ෛଞӰફĂիืٌቐࠟ֓و෫ă 6 ÷ 2π p 6 ÷ (2π) 2 ÷ 2'(2) p 2 ÷ (2'(2)) 4π ÷ 2π p 4π ÷ (2π) • พ൩ෳᅋืࠉوࠟڜDŽઋ QpmĂSfdDž෫LjഋྣӤพ൩ ӹؕຑეഓߔوਸ਼ࠟă߷ԥพ൩ߔਸ਼ࠟLjᇘ৹ྐ ۨණຑะዔڑՏ൩ਸ਼ࠟă A ዮࡍߔوਸ਼ࠟ ᇀѢ w!ऒቐوዮࡍߔوਸ਼ࠟ৹ჾෛଞქޔჾණă! ۶ઋ ǖ!(2 + 3) × (4 – 1) = 15 (2+3)* (4-1w ( 2+ 3 ) × ( 4– 1 15 A ࡥஎوዳᅚিڑ พ൩ӹؕ وӹؕ 12345 + 12345 + 12345 345 + 12345 + 12345I ߞӶ • صb!ܻࠟ־ᇀࡥஎණ෫Lj৹ჾෳᅋ d!ऒဂዳჰڑ ߞӶԌিࡥڑஎă • ဂዳি࢙ڑෳӹؕوქԩܖᄑࡥ־எوᅚՊLjױ෫ \! ܻ࢙ࠟ־ᇀᅚՊă־ܻࠟ!\ صᇀࡥஎණ෫Lj৹ჾෳ ᅋ e!ऒဂᅚჰߞڑӶԌিࡥڑஎă • ఀࡱ৹ჾѢ f!ባӹؕو་LjࢪѢ c!
A พ൩وዖܻืDŽዖॎDž صఀพ൩ืၳӹؕ෫Ljದटү،ᇀ֎ཛྷĐพ൩ഘđو، ഘቲLjױพ൩ഘو൛ફཛྷ :: ዖॎăნটกํLjᇀქޔ ืၳӹؕቲዮۂพ൩ :: ዖॎوዖܻă իLjӹصพ൩ብߞوӶᇀࡥஎණඝڑཛྷዝDŽ|Dž ࢪ࠻DŽ!*ăصพ൩ഘوෝᅨ൛ફඵᅢ 21 ዖॎ෫LjߞӶ टӰཛྷඝ۽وڑਙDŽk*ă ױቸഉਦۢූ෫Ljഋᇀคوصብቛพ൩صوӹؕ Ԍࣜದॕ߷ă! k ࣜوӬࣃ A Տ൩னࠧݥݐன ӊࣜಹᅘቸพ൩னăՏ൩னᇀߞӶብՏ൩ఀพ ൩وዖܻLjԌटߞӶᅚՊوຑᅘዖܻဂᅚჰჾ໐־ਅࣺă ݥݐனटఀพ൩وዖܻණဢᇀߞӶብوዖܻණă! ᆓӹؕ Տ൩ன 1+2|34 Ѣ+ 1+2+|34 ߞӶ ݥݐன 1+2 3 4 ߞӶ ֽയෛพ൩னහڊཛྷՏ൩னă ეݢӰཛྷݥݐன෫LjഋѢ 1D)JOT*ă Ck-14 1+2 + 4!
A ݳพ൩وऒՃዷوӬࣃ ۶ઋ ǖ!ეޚቁ!47:!ġ!24!ෳದӰཛྷ!47:!ġ!23!෫ 369*13 369 × 13I D2 369 × 12I A ऒՃዷوකׅ ۶ઋ ǖ!ეޚቁ!47:!ġġ!23!ෳದӰཛྷ!47:!ġ!23!෫ Տ൩ன 369**12 369 ×× 12I ddD 369 ×I12 ݥݐன 369**12 369 ×× 12 dddD 369 × 12 A ӹؕቲऒՃዷوӬࣃ ᇀՏ൩ன࿒Ljᅋ d!ࠧ e!टߞӶჰڑባఀეӬࣃو ऒՃዷوᅚՊLjѢ D!टದකׅLjഹࡍቖှቁവوऒՃዷă ᇀݥݐன࿒LjटߞӶჰڑባఀეޚቁوऒՃዷብLjഹ ࡍቖှቁവوऒՃዷă! A ࠨᇀӹؕቲՏ൩ऒՃዷ ეᇀӹؕቲՏ൩ऒՃዷ෫ӤၙၭᇗՏ൩னăᅋ d!ࠧ ഹࡍ६ှऒՃዷă! e!टߞӶჰڑባეՏ൩ऒՃዷوብLj Ck-15
k ؓྥብوՓሖ ߷ԥቁവLjصఀѢ w!ቖှ෫Ljؓྥဳྲट־ ᇀࡥஎණăؓྥဳྲ־ࡍLjѢ d!ࢪ e!ऒ৹ෳߞ ӶባቲդූؓྥوብLjჾӯఀޚቁă! ۶ઋ ǖ ! !صఀეพ൩ 25!Ģ!21!ġ!3!>Ljലพ൩ષ 25!Ģ!1!ġ! 3!> ෫ DŽ࿒ઋෳᅋՏ൩னă Dž 14/0*2w Mat h ERROR e!ࢪ d 14 ÷ 0I×2 ؓྥብ ÷ × d1w 14 10 2 28 ࢱӊࣜ ܇ׅှኢடLjӊॎढ़මࣜو৹ᇀࣜಹوൌࠨࣜன ቲ६ှLj دCBTF னׅ༶ă k ᇘᆱ ᇘᆱ৹ᅋᅢ६ှࣩDŽ+*-!ऋ )-*-!֓ )**-!) ׅ/* ࣜă ۶ઋ ǖ !7 × 8 − 4 × 5 = 36 7*8-4*5w Ck-16 36
k ืܖ ืܖෳᅋቚ *{) ܻޒܖوڊพ൩ă A ࣜืܖ۶ઋ 1 2 11 ۶ઋ 2ǖ 3 4 + 1 3 = 4 1 2 3$1$4+ 1$2$3w 2 1 7 ۶ઋ 3ǖ 3 + 2 = 6 DŽืܖြ ! ǖe0d* 2$3+1$2w 4{11{12 7{6 ኢ • ߷ࣜืܖॕ߷ޕԩܖDŽሿื , ܖዓ , ܖா , ܻޒܖDž وዜืմ߹ 21 Ljࣜॕ߷टჾဏืြă • ߷พ൩ࣜوཛྷืܖᅳဏืࣜࠩࢤوLjࣜॕ߷ टჾဏืြă • ޕوืܖԩܖቝพ൩ሿืăพ൩܇ሿืटդූဏืြ ࣜوॕ߷ă! A ืܖ؞ြᅳ࣯ืܖြࣺوӰࡳ ეटืܖ؞Ӱࡳཛྷ࣯ืܖDŽࢪट࣯ืܖӰࡳཛྷืܖ؞Dž෫Lj ഋѢ !$)e0d*ă A ဏืြᅳืܖြࣺوӰࡳ Ѣ $ ৹ᇀဏืᅳืܖြቐࣺӰࡳă ኢ ߷ޕืܖԩܖDŽሿื , ܖዓ , ܖா , ܻޒܖDžوዜื մ߹ 21 LjᇘࣜಹԥဏืြӰࡳཛྷืܖြă Ck-
k ҇ܖӔࣜ พ൩ქืޔࡍพ൩҇ *&) ࠟܖ৹ෳืݡӰཛྷ҇ืܖă A ҇ܖӔࣜ۶ઋ ۶ઋ 2ǖ 2 % = 0.
۶ઋ 8ǖ ट 411 ৻ࣩባՌฎჅӊᆓቺ و611 ৻ණLj فه911 ৻وዮቷՌฎჅӊă611 ৻ܖ҇وቐ࣎ก 911 ৻Ǜ (500+300) 160 /500!((%)w ۶ઋ 9ǖ ืص 51 ᇜࣩ ف57 ෫LjӰࡧଔཛྷۂඵǛ (46-40)/40 15 !((%)w k ܖڪஓDŽ෨६ቨDžࣜ A ෨६ቨืوพ൩ ࿒எढ़මพ൩෨६ቨืࢱوӊশۨă! | !~ ڪ$!| !~ ܖ$!| ஓ ~!$ ۶ઋ ǖ!ეพ൩ 3°41´41˝ ෫ 2$30$30$w 2 ˚ 30 ˚ 30 ˚ 2 ˚ 30 ˚ 30 • ഋኢᄌLjܖࣆڪӤၙพ൩ᅘืLj࣊ෳದཛྷă! A ෨६ቨࣜ۶ઋ ࿒઼੮ျو෨६ቨࣜटդූ෨६ቨࣜوॕ߷ă • ޔ෨६ቨืࢪࣩۨوऋۨ • ෨६ቨืᅳ෨६ቨืׅۨࢪۨ֓و ۶ઋ ǖ!3°31´41˝!,!4:´41˝!>!4°11´11˝ 2$20$30$+ 0$39$30$w Ck-19 3 ˚ 0˚ 0
A ෨६ቨᅳ෨६ቨࣺࡳو ࣜصॕ߷෫LjѢ $!৹ᇀ෨६ቨᅳ෨६ቨࣺࡳ ืă! ۶ઋ ǖ!ეट 3/366 ࡳཛྷ෨६ቨ෫ 2.
• ࣜઈو൛ફกᅘوăࣜصઈ჻ୄ෫Lj६ှူ ࣜوटෳࣜઈቲዮছࣝوଆዔڑӇකׅLjჾཛྷူ ࣜ໐־ਅࣺă k Փᆪޢوෳᅋ ࣜصઈࣝଆᇀࡥஎණ෫LjѢ d!ࢪ e!ߞ ӶԌ६൩ӬࣃனăѢ e!৹ෳߞӶᇀو་־Lj ۚѢ d!৹ෳߞӶᇀوயཤ־ă६ှ༾ӛຑၖეو ӰࡍޚLjѢ w!ቖှࣜă ۶ઋ ǖ!4 × 3 + 2.5 = 14.5 4 × 3 – 7.1 = 4.9 4*3+2.5w 4×3+ 2 . 5 145 d 4 × 3 + 2 . 5I DDDD-7.1w 4×3 –7 .
• صఀ६ှ࿒ะൌࠨՃዷ෫LjBot ቲو൛࢙Ӈူޚǖෳᅋ ࣜॕ߷६ှࣜLjᇀڢ،ಹቲࣩ൩ืࢪದቲ ऋണืLjཛྷӰફݑࢪӰફቲื־ٻLjᇀ TE ன ࢪ SFH னቲพ൩༇ࣜืযă • ᇀ࢙դූქޔჾණࣜॕ߷ࣜوቲDŽዸӶٌࣜDž Lj ฑ࿘־ᇀࡥஎණوॕ߷࢙Ӈү،ᇀ Bot ቲă • ߷صࣜو־ષؓྥLjᇘ Bot و൛ԥ࢙ݢӰă • ᇀ DNQMY னቲ६ှࣜืݒ෫Ljॕ߷و෯ืԩࠧၗื ԩڞटӇү،ᇀ Bot ቲăدഋኢᄌLj߷ఀݢӰባದຓ ࣜனLjᇘืوၗืԩटӇഅׅă! A ࠨᇀઘၦࣜቲዔڑՏ൩ Bot ۶ઋ ǖ!ეट 4!ġ!5 ࣜوॕ߷ׅჾ 41 ෫ 3*4w DŽഹࡍDž/30w 12 Ans ÷ 30 04 Ѣ /!৹ዔڑพ൩ Botă ኢ ڶᅢ؞ᅘਸ਼ࠟԸืืࠉوDŽٞ 23 ოDž Ljصఀቝพ൩ࠉืࡍ Ѣ w ෫LjBot ԯዔڑӰཛྷԸืă Ck-22
A ࠨᇀࣜቲฐڑՏ൩ Bot ۶ઋ ǖ!ეᇀದຓࣜቲෳᅋ 234!,!567 ࣜوॕ߷෫Lj६ ှ࿒ຑՃዷ! 123 + 456 = 579 789 – 579 = 210 123+456w 579 789-Kw 210 k ڢ،ಹوෳᅋ ڢ،ಹ )N* ኙეᅋᅢࣜ੩ࢵዜࠧă ࡥஎණ־ N ܻࠟ෫Ljӹڢ،ಹቲ،ᅘ܇ืوă ڢ،ಹ৹ᇀ ׅTE னࠧ SFH னቐ༶وຑᅘࣜன ቲෳᅋă N ܻࠟ 10M+ A ࠨᇀڢ،ಹቲࣩ൩ื صఀพ൩ืوࢪࣜॕ߷ᇀࡥஎණ෫LjѢ m!৹ट ืݡࣩ൩ڢ،ಹ )N* ቲă! ۶ઋ ǖ!ეट 216!Ģ!4 ࣜوॕ߷ࣩ൩ڢ،ಹ )N* ቲ෫ 105/3m Ck-23 35
A ࠨڢ،ಹऋണื صఀพ൩ืوࢪࣜॕ߷ᇀࡥஎණ෫LjѢ 1m)Nlj* ৹ڢ،ಹ )N* ऋണืݡă ۶ઋ ǖ!ეڢ،ಹ )N* ऋണ 4!ġ!3!ࣜوॕ߷෫ 3*21m(M–) 6 ኢ ࣜصॕ߷ᇀࡥஎණ෫LjѢ m!ࢪ 1m)Nlj* ৹ टืݡࣩ൩ڢ،ಹቲࢪڢ،ಹऋണืݡă ቺეƽ ᇀࣜॕา෫Ѣ m!ࢪ 1m)Nlj*! DŽۚԥѢ wDž෫־ ᇀࡥஎණืوཛྷࣜॕ߷DŽݡॕ߷टӇࣩ൩ڢ، ಹLjࢪڢ،ಹऋണݡॕ߷Dž ăದԥกڢ،ಹቲ ᇀү،ืوযă A ڢ،ಹ൛وՓᆪ Ѣ tm)N*ă A ࠨഅڢׅ،ಹቲืوযDŽባ 1Dž 01t)TUP*m)N* അڢׅ،ಹटෳ N ܻࠟဋă! k Ӱફوෳᅋ ӊࣜಹӄᅘணཛྷ BĂCĂDĂEĂY ࣆ Z وޔӰફLj৹ ᇀၖე෫ᅋᅢү،ืăӰફ৹ᇀຑᅘࣜனቲෳᅋă Ck-24
A ࠨटืࢪࣜॕ߷ޖݑӰફ ഋෳᅋ࿒ะՃዷटืࢪࣜޖݑӰફă ۶ઋ ǖ!ეट 4!,!6 ޖݑӰફ B ෫ 3+51t)TUP*-)B* A ࠨՓޖݑӰફืو ეՓޖݑӰફืو෫LjഋѢ t!ࡍቚڊӰફணă ۶ઋ ǖ! ეՓޖݑӰફ B ืو෫!!!!!!!!!!t-)B* A ࠨᇀࣜቲෳᅋӰફ ఀ৹ჾဃෳᅋืქჅᇀࣜቲෳᅋӰફă ۶ઋ ǖ! ეࣜ 6!,!B ෫!!!!!!!!!!5+a-)B*w A ࠨഅׅӰફቲืوDŽባ 1Dž ۶ઋ ǖ! ეഅׅӰફ B ෫!!!!!!!!!!01t)TUP*-)B* k ࠨഅׅຑᅘ،ಹቲو൛ ეഅڢׅ،ಹĂӰફ،ಹჾࣆؖѦ،ಹቲو൛ ෫Ljഋቖှ࿒ะऒՃዷă! 19(CLR)1(Mem)w • ԥഅׅࣜಹوහڊ෫LjഋᇀණะՃዷቲѢ A!ۚԥ Ѣ wă Ck-25
৶ၳࠉืࣜ ܇ׅှኢடLjӊॎቲढ़මืࠉو৹ᇀࣜಹوൌࠨࣜ னቲෳᅋLj دCBTF னׅ༶ă! ৶ၳࠉืࣜၙቌ • ६ှࠆᅘՂ৶ၳࠉืࣜو෫Ljࣜॕ߷৹࢙ၖე ქဗ෫ࣺԯ࢙־ăቓࣜفॕ߷־ཛྷቛLjഋԥე६ ှൌࠨऒՃዷă • ეቲڱቁᇀ६ှࣜو෫LjഋѢ Aă ߔᅢ৶ၳࠉืوশۨ • ؠӹࠉืԸืྲྀوዖਸ਼ᇀؙਸ਼ࠟ )|!~* ቲăԸืիཛྷ | ื ~ ࢪ | ӹؕ ~ă • ؙصਸ਼ࠟ )|!~* و༶எᅞਸ਼ᅘᆘਸ਼ࠟ෫Ljದӹᇀᆘਸ਼ࠟ พ൩وຑᅘোཛྷதă k ᆘቾଔ )π* ࠧዔഹوืڶٛ e ӊࣜಹ৹ჾᇀࣜቲพ൩ᆘቾଔ )π* ࠧዔഹوืڶٛ eă π!ࠧ e!৹ჾᇀຑᅘனቲෳᅋLj دCBTF னׅ༶ă࿒ ཛྷӊࣜಹޕՂիืوă π = 3.14159265358980 (1e(π)) e = 2.
k ൻऻࠧ۴ൻऻࠉื A শۨࠧพ൩ sin({n}), cos({n}), tan({n}), sin–1({n}), cos–1({n}), tan–1({n}) ۶ઋ ǖ!sin 30 = 0.5, sin–10.5 = 30DŽऻةڪǖEfh* s30)w 05 –1 1s(sin )0.
π ۶ઋ ǖ!ეट!! !࡙ڪӰࡳཛྷڪ෫DŽऻ ةڪǖEfh* 3 (1e(π)/2) 1G(DRG')2(R)E ( π ÷2 ) r 90 k ใചࠧ۴ใചࠉื A শۨࠧพ൩ sinh({n}), cosh({n}), tanh({n}), sinh–1({n}), cosh–1({n}), tanh–1({n}) ۶ઋ ǖ!sinh 1 = 1.
k ቚืࠧืࠉืڶ A শۨࠧพ൩ 10^({n}) ........... 10{n} e^({n}) ............. e{n} log({n}) ............ log10{n} DŽիᅋืڶDž log({m},{n}) ...... log{m}{n} ) ჾ {m} ཛྷٛ* ืڶو ln({n}) .............. loge{n} DŽዔഹืڶDž ۶ઋ 2ǖ ! log216 = 4, log16 = 1.204119983 l2,16)E 4 g( ) l16)E l o 16 1204119983 སቚڊٛ෫ӹჾ 21 ཛྷٛDŽիᅋืڶDž ă! ۶ઋ 3ǖ ln 90 (loge 90) = 4.
k ֓ืࠉޗ۽֓ࠧืࠉ۽ A শۨࠧพ൩ {n} x2 ............... {n}2 ) ౿* ۽ {n} x3 ............... {n}3 ) * ۽ {n} x–1 .............. {n}–1 ) * ืؽ {(m)}^({n}) ....... {m}{n} ) ֓* ۽ '({n}) ........... {n} 3 3 '({n}) .......... {n} ) ౿* ޗ۽ ({m})x'({n}) ... {m} {n} ) * ޗ۽ DŽ֓ޗ۽Dž 2 + 1) (' 2 – 1) = 1 ۶ઋ 2ǖ (' (92)+1) ('( 2 ) + 1 ) ('( 2 ) – 1 ) (92)-1)E 1 2 3 ۶ઋ 3ǖ –2 = –1.
k ዸӶӰࡳDŽቓऻዸӶ ↔ ࣁዸӶDž ӊࣜಹ৹ჾᇀቓऻዸӶࠧࣁዸӶቐࣺ६ှӰࡳă o o ! ቓऻዸӶ )Sfd*! ࣁዸӶ )Qpm* A শۨࠧพ൩ ቓऻዸӶӰࡳཛྷࣁዸӶ )Qpm* Pol(x, y) x ǖቓऻዸӶ x y ǖቓऻዸӶ y ࣁዸӶӰࡳཛྷቓऻዸӶ )Sfd* Rec(r, ) r ǖࣁዸӶ r ǖࣁዸӶ ۶ઋ 2ǖ ! ეटቓऻዸӶ )' 3-!' 3!* ӰࡳཛྷࣁዸӶ෫! DŽऻةڪ ǖEfh* 1+(Pol)92) 2 ,92))E DŽՓ و * t,(Y) Ck-31 45
۶ઋ 3ǖ ! ეटࣁዸӶ )3-!41˚* ӰࡳཛྷቓऻዸӶ෫ DŽऻةڪǖ Efh* 1-(Rec)2, 30)E 1732050808 DŽՓ y و * t,(Y) 1 Aኢ • ሦဗࠉื৹ჾᇀ DPNQLjTE ࣆ SFH னቲෳᅋă • ࣜॕ߷ቝӹٞქ ޔr!ࢪ x!ă • ࣜॕ߷!وr DŽࢪ x DžӇޖݑӰફ YLjۚ DŽࢪ y DžӇޖݑӰફ ZDŽٞ 36 ოDžăეՓ DŽࢪ y Dž෫Lj ഋޖݑӰફ Z ืوLj۶ઋຑă • ቓऻዸӶӰࡳཛྷࣁዸӶ෫Lj !و۶ཙཛྷ –291°< < 291°ă • ᇀࣜ६ှዸӶӰࡳ෫LjࣜಹෳᅋዸӶӰࡳդූ وٞქืޔ )r ࢪ x Dž ă ۶ઋ ǖ!Qpm!)' 3-!' 3!*!,!6!>!3!,!6!>!8 Ck-32
k ࢵࣜܖࠧཔࣜܖ A ࢵࣜܖ ӊࣜಹԳᅋݽ๑-৻ନۨن६ှࢵܖᆱă শۨࠧพ൩ ∫ ( f (x), a, b, tol) !f (x);!Y ืࠉوDŽพ൩Ӱફ Y ຑෳᅋืࠉوă Dž ! a;!ࢵܖഘᅺو࿒ ! b;!ࢵܖഘᅺوණ ! tol;!ާ۶ཙ •!ݡԸื৹ჾෛଞăᇀሦቸഉਦ࿒Ljटෳᅋ! 2!×!21−6!ާوă e ۶ઋ ǖ!∫1 In( x ) = 1 fIa0(X)) ,1,aI(e))E Ck-33 ∫ ( I n ( X ) , 1, e ) 1
A པࣜܖ ӊࣜಹޗযቲဲࣜۨܖ॰ืـă শۨࠧพ൩ d/dx( f (x), a, tol) f! )x*;!Y ืࠉوDŽพ൩Ӱફ Y ຑෳᅋืࠉوăDž ! a;!พ൩ຑၖཔܖ࿅ืو٧DŽཔܖ٧Džو ! tol;!ާ۶ཙ • ݡԸื৹ჾෛଞăᇀሦቸഉਦ࿒Ljटෳᅋ 2!×!21−21 ާوă ۶ઋ ǖ !ეࢩ!ืࠉهy!>!tjo)x* ᇀ٧ x >! π !ืـو 2 DŽऻ ةڪǖSbeDž 1f(d/dx)sa0(X)), d/ dx ( s i n ( X ) , π ÷2 ) 1e(π)/2)E 0 A ࢵࣜܖࠧཔࣜܖوኢᄌ • ४৹ᇀ!DPNQ!னࠧ QSHN னDŽᆱှன ǖDPNQDžቲ ቖှࢵࣜܖࠧཔࣜܖă! • ᇀ!f)x* ቲԥ৹ෳᅋჾ࿒ܻࠟ ǖ !QpmĂSfdăᇀ!f)x*ĂaĂb! ࢪ!tol!ቲԥ৹ෳᅋჾ࿒ܻࠟ ǖ !∫Ăd0dxă • ᇀ!f)x*!ቲෳᅋൻऻࠉื෫Ljഋट!Sbe!ቚڊཛྷऻةڪă • tol!ᆣဏLjॽവڪट࢙ᆣݽLjدሦༀ෫ნ࢙႟լ
४คᅋᅢࢵࣜܖوኢᄌ • իLjࢵࣜܖၖეصլو෫ࣺԯ༾֑ă 1 • ڶᅢ!f)x*! 1Ljದቲ!a x b ) ઋLj∫0!4x3 – 3 Ǚ –2*Lj ࣜॕ߷टཛྷݘă • ޗয!f)x*!و൛ࠧࢵܖഘᅺLjᅘ৹࢙ූ֑մާ־و ࣜؓྥLjـቤࣜಹؓྥဋྲă ४คᅋᅢཔࣜܖوኢᄌ • ߷སพ൩!tol!টሖԥڶفქޔॖوฏઞLjtol!टዔڑ ٻሿLjჾവ־ڊॖă • ܇ઘၦ٧Ă༏ӰԒڑĂࣁࣁࢪؙဏ٧Ăߑ٧ჾࣆԥཔ وܖ٧Ljࢪሣഗ॰!1!وཔܖ٧ࢪཔࣜܖॕ߷৹࢙ ـቤࣜॽവ࠶ڪࢪؓ־ă A ֑ࣜܖࢵޢ࣒೩ ߷ቾಜࠉืࢪࢵܖഘࣺդූቁ!ݘf )x*!ࠉื ഋܖӼཛྷ୧ޔቾಜܖࢵڢةLjࢪሣܖӼཛྷቁืԩืݘࠧܖ ԩܖࢵڢةܖLjഹࡍࠩԌॕ߷ă ∫ S 正数 c a f(x)dx + ∫ b c f(x)dx 正数部分 负数部分 (S 正数) (S 负数) S 负数 Ck-35
߷ᅑᅢࢵܖഘࣺ౷۱ӰـۚڑቤࢵܖԒڑ ࠶ؙ टࢵܖഘࣺܖཛྷޔۂԩ ) ܖटԒوؙ࠶ڑഘᅺܖཛྷ൲ݧဏ ԩ* ܖLjڶ୧ޔԩܖቖှࢵܖLjഹࡍࠩԌॕ߷ă ∫ b f(x)dx = a + ∫ b x4 ∫ x1 a f(x)dx + ∫ x2 x1 f(x)dx + .....
A ڶ )Bct* ६ှ෯ืࣜ෫Ljᅋ Bct) ৹فهქґوڶăืࠉױ ৹ᇀ DNQMY னቲෳᅋLjࣜوืݒڶDŽؙဏDž ăᅘ ߔഉഋԸᆪٞ 51 ოණوĐࣜืݒđქॎă শۨ ǖAbs({n}) ۶ઋ ǖ! Abs (2 – 7) = 5 1)(Abs)2-7)E 5 A ࢲื )Sbo$* ืࠉױդූൻဏื )1/111 ባ 1/:::* وལࢲืăᅑᅢದ ԥၖეԸืLjຑჾ৹ჾဃӰફქჅෳᅋă শۨ ǖRan# ۶ઋ ǖ!ეෳᅋ 2111Sbo$ ടهൻ ޔ4 ืوࢲื෫ă 10001.
A ઼ )nQr*!0 ዩࠩ )nDr* শۨ ǖ{n}P{m}, {n}C{m} ۶ઋ ǖ!ڶᅢქ ޔ21 وዩLj5 ޔو઼ࠧዩࠩޕᅘۂ ඵቸǛ 101*(nPr)4E 5040 101/(nCr)4E 210 A ල൩ࠉื )Soe* ߹टืLjӹؕࢪࣜॕ߷ቚڊཛྷԸืLjఀ৹ჾෳᅋ ල൩ࠉื )Soe* ڶದ६ှල൩ăල൩ࠉืޗযืහ ڊटืල൩ባᅘပืă Opsn2 ࢪ Opsn3 وල൩ ཤืӇල൩ባ 21 ืă Gjy ࢪ Tdj وල൩ ืӇල൩ባቚืوڊă ۶ઋ ǖ!200 ÷ 7 × 14 = 400 DŽ4 ဏืDž 1Ne1(Fix)3 DŽԩࣜෳᅋ 200/7E 26 ืăDž *14E Ck-38 28571 400000
ᇀෳᅋල൩ࠉื )Soe* ६ှༀࣜوă 200/7E 10(Rnd)E DŽࣜෳᅋॿල൩ ืوăDž DŽල൩ॕ߷Dž *14E 28571 399994 4 ࠨෳᅋ 21 !ޠၳࣝืۨDŽFOHDž ޠၳࣝืۨ )FOH* ჾქ ޔ2 ባ 21 ቐࣺوቁืᅳქ ޔ21 و 4 ࢵ֓و۽״ӹืăޮᅘቸޠၳࣝืۨLjFOH/!ࠧ FOH,ă DNQMY னԥ֞ޠၳࣝืۨوෳᅋă kFOH ࣜ۶ઋ ۶ઋ 2ǖ ! ეෳᅋ FOH/ ჾޠၳࣝืۨӹ 2345 ෫ 1234E 1234 W 1234 03 W 1234 00 ۶ઋ 3ǖ ეෳᅋ FOH, ჾޠၳࣝืۨӹ 234 ෫ 123E 1W(,) 1W(,) Ck-39 123 0123 03 0000123 06
ࣜืݒDŽDNQMYDž ე६ှᇀӊॎቲढ़මو۶Ճዷ෫Ljฑ࿘ၭᇗ DNQMY ዷ ཛྷࣜனă k وืݒพ൩ A ࠨพ൩ၗื )i* ۶ઋ ǖ!ეพ൩ 3!,!4i ෫ 2+3W(i) 2 + 3 iI A ࠨෳᅋࣁዸӶြพ൩ืݒ ۶ઋ ǖ!ეพ൩ 6!∠!41 ෫ 51-(∠)30 5 30I ቺეƽ! พ൩ܸऻ ෫Ljഋޗযࣜಹصوയෛऻةڪහڊพ ൩ӹऻืوڪă k ࣜืݒॕ߷و ࣜصդූืݒॕ߷෫LjS⇔I!ܻࠟᇀࡥஎوᅚණऻLj Ԍೲ෯ืԩฑ࿘־ăეयໜ෯ืԩࣆၗืԩ෫Ljഋ Ѣ 1E)Sf⇔Jn*ă Ck-40
۶ઋ ǖ!ეพ൩ 3!,!2i!Ԍದࣜॕ߷෫ 1,(SETUP)eee1(a+bi) 2 + i 2+W(i)E 2 ෯ืԩă 1E(Re⇔Im) 1 ၗืԩă )i!ܻࠟᇀၗืԩ߹֔ቲ־ă* A ࣜืݒॕ߷وയෛြ ఀ৹ჾၭᇗቓऻዸӶြࢪࣁዸӶြࣜืݒॕ ߷ă ၗืኃ ၗืኃ o r ⬔ a + bi b a ෯ืኃ ෯ืኃ o ቓऻዸӶ ࣁዸӶ ഋᅋහብࡥஎቚڊຑၖეوയෛြăᅘߔഉLjഋ ԸᆪĐืݒြوቚڊđქॎDŽٞ 21 ოDž ă Ck-41
k ࣜॕ߷۶ઋ A ቓऻዸӶြDŽa,bi* 1,(SETUP)eee1(a+bi) 3 + i) = 2' 3 + 2i = 3.464101615 + 2i ۶ઋ 2ǖ 2 × (' 2*(93)+W(i))E 3464101615 1E(Re⇔Im) 2 2 į 45 = 1 + 1iDŽऻ ةڪǖEfh* ۶ઋ 3ǖ ' 92)1-( į ) 45E 1E(Re⇔Im) 1 1 A ࣁዸӶြDŽr∠ * 1,(SETUP)eee2(r į ) 3 + i) = 2' 3 + 2i = 4 į 30 ۶ઋ 2ǖ 2 × (' 2*(93)+W(i))E 4 1E(Re⇔Im) 30 ∠!ܻࠟᇀ ෫־ă ۶ઋ 3ǖ 1 + 1i = 1.
k ޮᦊ) ืݒDpokh* ۶ઋ ǖ!ഓ 3!,!4i ืݒᦊޮو 1,(Conjg)2+3W(i))E 2 1E(Re⇔Im) -3 k ڶܸࠧऻ )Bct-!bsh* ၗืኃ ۶ઋ ǖ! ࠨഓ ه3!,!3i وڶܸࠧ b = 2 ऻDŽऻ ةڪǖEfh* o a=2 ෯ืኃ ڶǖ 1)(Abs)2+2W(i))E 2828427125 ܸऻǖ 1((arg)2+2W(i))E 45 Ck-43
k യෛืݒြوӰޚ A ࠨཛྷࣜቚڊቓऻዸӶြ ᇀࣜوயཤพ൩ 1-)'a,biDž ă 2 į 45 = 2 + 2iDŽऻةڪ ۶ઋ ǖ!2' ! ǖEfh* 292)1-( į )45 1-('a,bi)E 1E(Re⇔Im) 2 2 A ࠨཛྷࣜቚࣁڊዸӶြ ᇀࣜوயཤพ൩ 1+)'r∠ Dž ă 2 į 45 = 2.
৹ჾෳᅋහብࡥஎණو༇ࣜ౷ଔහڊDŽٞ 21 ოDžੂၭᇗ ຑၖეوพ൩ۨ۽ă A ืযوพ൩ืڪ พ൩ืوযوዮืؙც౷ଔกಶ )GsfrPo* ࡱก ॖ) ׅGsfrPgg* ۚԥༀă! TE!ன!////////// 51!!)GsfrPo*-!91!!)GsfrPgg* SFH!ன!//////// 37!!)GsfrPo*-!51!!)GsfrPgg* A Ⴥӊืযوഅׅ ݢӰባದຓࣜனࢪݢӰ༇ࣜ౷ଔහڊ෫Lj،ಹቲو ຑᅘჅӊืযোटӇഅׅă k ࠨ६ှةӰફ༇ࣜࣜ ე६ှᇀӊॎቲढ़මو۶Ճዷ෫Ljฑ࿘ၭᇗ TE ዷཛྷࣜ னă! A Ⴥӊืযوพ൩ ౷ଔಶDŽGsfrPoDž ࿒எढ़මพ൩ዩื x1-!x2-!///!xnLjࣆ౷ଔ Gsfr2-!Gsfr3-!///! Gsfrn ෫ຑၖეوऒՃዷă {x1}1,(;) {Freq1}m(DT) {x2}1,(;) {Freq2}m(DT) {xn}1,(;) {Freqn}m(DT) ኢ ߷ዩืو౷ଔቝᅘქ
۶ઋ ǖ!ࠨพ൩ᅚӫืوয ;!)x-!Gsfr*!>!)35/6-!5*-!)36/6-!7*-! )37/6-!3* 24.51,(;)4 24 .5 ; 4I L i ne = (DT) m 0 1 m)EU* ቌࣜಹױཛྷٞქืޔযوயཤă 25.51,(;)6m(DT) L i ne = 26.51,(;)2m(DT) 3 ౷ଔॖ) ׅGsfrPgg* ᇀሦቸഉਦ࿒Ljഋ࿒ຑܖӼพ൩ืޕযă {x1}m(DT) {x2}m(DT) ...
ص༇ࣜ౷ଔහڊཛྷ GsfrPo ෫Ljืযც࿒๋ၠ ǖx1-! Gsfr2-!x2-!Gsfr3- ცױ੮༚ăص༇ࣜ౷ଔහڊཛྷ GsfrPgg ෫Lj ืযც x1-!x2-!x3- ๋وၠăఀࡱ৹ჾෳᅋ f!۴۽ဂ ၭࡳืযă! A ჅӊืযوӬࣃ ეӬࣃჅӊืয෫Ljഋटದ־ٻLjพ൩ူืLjഹࡍѢ Eă ۶ઋ ǖ!ࠨӬࣃᇀٞ 56 ოණĐჅӊืযوพ൩đქॎቲ พ൩وჅӊืযĐGsfr4đ q = Af F r e 3 q = 3E F r e 3 2 3 A Ⴥӊืযوකׅ ეකׅჅӊืয෫Ljഋटದ־ٻLjഹࡍѢ 1m)DM*ă ۶ઋ ǖ !ࠨකׅᇀٞ 56 ოණĐჅӊืযوพ൩đქॎቲ พ൩وĐx2đืয = Accc x 2 = 1m(CL) L i ne Ck-47 255 2
ኢ • ࿒எढ़මකׅՃዷࡍࡥஎืوয൛ă ቐ ቐࡍ x1! !;!35/6 x1! !;!35/6 Gsfr2;!5 Gsfr2;!5 ! x2! !;!36/6 x2! !;!37/6 Gsfr3;!7 Gsfr3;!3 x3! !;!37/6 Gsfr4;!3 ဂණჰă ! • ص༇ࣜ౷ଔහڊཛྷಶ )GsfrPo* ෫Ljᄮ وx ืযࠧ౷ ଔืযڶटӇකׅă A ࠨකׅຑᅘჅӊืয ቖှ࿒ะऒՃዷ৹කׅຑᅘჅӊืযă 19(CLR)1(Stat)E ԥකׅຑᅘჅӊืয෫LjഋᇀණՃዷቲѢ ALjۚ܇ Eă A ෳᅋพ൩وჅӊืযو༇ࣜࣜ ე६ှ༇ࣜࣜ෫Ljഋพ൩ᄮوதԌѢ Eă ATE ன༇ࣜதԸ৬ 11)T.TVN*1 x2! ഓჅӊืযو౿ࠧ۽ă Σ x2 = Σ xi2 11)T.
11)T.TVN*3 n! ഓჅӊืă 12)T.WBS*1 x̄! ഓ౿োă Σ xi o= n σx! 12)T.WBS*2 ഓዜӶኼ౭ă σx = Σ(xi – o)2 n 12)T.WBS*3 sx! ഓჅӊӶኼ౭ă sx = Σ(xi – o)2 n–1 12)T.WBS*e1 minX! ഓჅӊوዮဏă 12)T.
k ࠨ६ှใӰફ༇ࣜࣜ ე६ှᇀӊॎቲढ़මو۶Ճዷ෫Ljฑ࿘ၭᇗ SFH ዷཛྷࣜ னă A ߥࣜوቸ੮ ୧״६൩ SFH னࡍLjఀӤၙၭᇗეෳᅋࣜߥووቸ ੮ă! ߥࣜቸ੮وၭᇗ 2/!६൩ SFH னă • ױ෫ࡥஎߥֽࣜوၭᇗԵةăԵޮةᅘ ࡥޔஎLjᅋ d!ࠧ e!৹ᇀದࣺ६ှၭࡳă 3/!ቖှ࿒ะՃዷቐქၭᇗຑၖეࣜߥوă ეၭᇗߥױ੮ျ෫ǖ Ѣױऒǖ ၂ߥ!( y = a + bx) 1!)Mjo* (!ߥืڶy = a + b Inx) 2!)Mph* e!ቚืߥ!(y = aebx) 3!)Fyq* ֓(!ߥ۽y = axb) 4!)Qxs* ௬ߥ!( y = a + b/x) e!1!)Jow* ۠ (!ߥ״y = a + bx + cx 2) e!2!)Rvbe* ab!ቚืߥ!( y = abx) e!3!)BC.Fyq* ኢ ၖე෫Ljఀ৹ჾᇀ SFH னቲࡳཛྷದຓߥࣜ੮ျă Ѣ 12)T.
A Ⴥӊืযوพ൩ ౷ଔಶDŽGsfrPoDž ࿒எढ़මพ൩ዩื )x1-!y1*Lj)x2-!y2*Lj///!)xn-!yn*Ljࣆ౷ ଔ Gsfr2-!!Gsfr3-!///!Gsfrn ෫ຑၖეوऒՃዷă {x1},{y1}1,(;) {Freq1} m(DT) {x2},{y2}1,(;) {Freq2} m(DT) {xn},{yn}1,(;) {Freq n} m(DT) ኢ ߷ዩืو౷ଔቝᅘქޔLjᇘቝეѢ |xn~,|yn~ ă! m)EU*!พ൩ӯ৹DŽԥၖეቚڊ౷ଔDž ౷ଔॖ) ׅGsfrPgg* ᇀሦቸഉਦ࿒Ljഋ࿒ຑܖӼพ൩ืޕযă {x1},{y1} m(DT) {x2},{y2} m(DT) {xn},{yn} m(DT) A ࠨՓᆪᇀوჅӊืয Ⴥӊืযพ൩༾ӛࡍLjѢ c!৹ცఀพ൩๋وၠၭࡳืযă $!ܻࠟӹࡥஎණᇀوჅӊو࿒எࡱᅘืযăۚ `!ܻࠟӹණஎࡱᅘืযă ص༇ࣜ౷ଔහڊཛྷ GsfrPo ෫Ljืযც࿒๋ၠ ǖx1Lj y1LjGsfr2Ljx2Ljy2LjGsfr3Ljცױ੮༚ăص༇ࣜ౷ଔහ
A ჅӊืযوӬࣃ ეӬࣃჅӊืয෫Ljഋटದ־ٻLjพ൩ူืLjഹࡍѢ Eă A Ⴥӊืযوකׅ ეකׅჅӊืয෫Ljഋटದ־ٻLjഹࡍѢ 1m)DM*ă A ࠨකׅຑᅘჅӊืয ഋԸᆪĐࠨකׅຑᅘჅӊืযđ DŽٞ 59 ოDž ă A ෳᅋพ൩وჅӊืযو༇ࣜࣜ ე६ှ༇ࣜࣜ෫Ljഋพ൩ᄮوதԌѢ Eă ASFH ன༇ࣜதԸ৬ ዜࠧࣆჅӊืத )T.TVN Ե* ة 11)T.TVN*1 x2! ഓჅӊืয x و౿ࠧ۽ă Σ x2 = Σ xi2 11)T.TVN*2 x! ഓჅӊืয x وዜࠧă Σ x = Σ xi 11)T.TVN*3 n! ഓჅӊืă 11)T.
11)T.TVN*e2 y! ഓჅӊืয y وዜࠧă Σ y = Σ yi 11)T.TVN*e3 xy! ഓჅӊืয x ࠧ y ࠧࢵ֓وă Σ xy = Σ xiyi 11)T.TVN*d1 x2y! ഓჅӊืয x و౿۽ᅳ y وࢵ֓وዜࠧă Σ x2y = Σ xi2yi 11)T.TVN*d2 x3! ഓჅӊืয x وࠧ۽ă Σ x3 = Σ xi3 11)T.TVN*d3 x4! ഓჅӊืয x وࠧ۽״ă Σ x4 = Σ xi4 ౿োࠧӶኼ౭தDŽWBS ԵةDž 12)T.
σx! 12)T.WBS*1)WBS*2 ഓჅӊืয x وዜӶኼ౭ă σx = Σ(xi – o)2 n 12)T.WBS*1)WBS*3 sx! ഓჅӊืয x وჅӊӶኼ౭ă Σ(xi – o)2 n–1 sx = 12)T.WBS*1)WBS*e1 ȳ! ഓჅӊืয y و౿োă Σyi p= n σy! 12)T.WBS*1)WBS*e2 ഓჅӊืয y وዜӶኼ౭ă σy = Σ (yi – y)2 n 12)T.
ߥوߥ״۠܇࿅ืࠧࣜதDŽWBS ԵةDž a! 12)T.WBS*1)WBS*ee1 ഓߥާوիื bă b! 12)T.WBS*1)WBS*ee2 ഓߥާو࿅ื că r! 12)T.WBS*1)WBS*ee3 ഓߔ࿅ื să 12)T.WBS*1)WBS*d1 x̂! ޗযᇀၭᇗࣜߥوާߥوLjჾᇀױதஎพ ൩ืوዷཛྷ y Ljഓ x!ࣜوă 12)T.WBS*1)WBS*d2 ŷ! ޗযᇀၭᇗࣜߥوާߥوLjჾᇀױதஎพ ൩ืوዷཛྷ x Ljഓ y!ࣜوă ۠ߥوߥ״࿅ืࠧࣜதDŽWBS ԵةDž a! 12)T.WBS*1)WBS*ee1 ഓߥާوիื bă b! 12)T.
c! 12)T.WBS*1)WBS*ee3 ഓߥާو࿅ื dă x̂ 1! 12)T.WBS*1)WBS*d1 ჾᇀױதஎพ൩ืوዷཛྷ y Ljෳᅋٞ 69 ოණو ާഓ x وქࣜޔă x̂ 2! 12)T.WBS*1)WBS*d2 ჾᇀױதஎพ൩ืوዷཛྷ y Ljෳᅋٞ 69 ოණو ާഓ x وქࣜޔă ŷ! 12)T.WBS*1)WBS*d3 ჾᇀױதஎพ൩ืوዷཛྷ x Ljෳᅋٞ 69 ოණو ާഓ y ࣜوă ዮဏࠧዮؙத )NJONBY Ե* ة minX! 12)T.WBS*2)NJONBY*1 ഓჅӊืয x وዮဏă maxX! 12)T.WBS*2)NJONBY*2 ഓჅӊืয x وዮؙă minY! 12)T.WBS*2)NJONBY*e1 ഓჅӊืয y وዮဏă maxY! 12)T.
A ߥ࿅ืࠧࣜࣜާӹ ၂ߥ! த ߥާوիื b ߥ࿅ื c ߔ࿅ื s ࣜ m ࣜ n ࣜާ Σyi – b.Σxi a= n n.Σxiyi – Σxi.Σyi b= . 2 n Σxi – (Σxi)2 n.Σxiyi – Σxi.Σyi r= {n.Σxi2 – (Σxi)2}{n.Σyi2 – (Σyi)2} y–a m= b n = a + bx ۠ߥ״ த ߥާوիื b ߥ࿅ื c ߥ࿅ื d ࣜާ Σyi Σxi Σxi2 a= –b –c n n n Sxy.Sx 2x 2 – Sx 2y.Sxx 2 b= Sxx.Sx2x2 – (Sxx2)2 Sx 2y.Sxx – Sxy.Sxx2 c= Sxx.Sx2x2 – (Sxx2)2 دกLj ( ) ( ) .Σxi 2) ( Σx i Sxx = Σxi – 2 Sxx = Σxi – 2 (Σxi )2 n (Σxi .
த ࣜާ – b + b2 – 4c(a – y) m1 = 2c ࣜ m1 – b – b2 – 4c(a – y) m2 = 2c n = a + bx + cx 2 ࣜ m2 ࣜ n ߥืڶ த ߥާوի ื b ߥ࿅ื c ߔ࿅ื s ࣜ m ࣜ n ࣜާ Σyi – b.Σlnxi a= n n.Σ(lnxi)yi – Σlnxi .Σyi b= n.Σ(lnxi)2 – (Σlnxi)2 n.Σ(lnxi)yi – Σlnxi.Σyi r= {n.Σ(lnxi)2 – (Σlnxi)2}{n.Σyi2 – (Σyi)2} y–a b m=e n = a + blnx e!ቚืߥ த ࣜާ .Σxi ߥާو Σ ln y – b i a = exp n իื b ( ߥ࿅ื c ) n.Σxilnyi – Σxi.Σlnyi b= n.
n.Σxilnyi – Σxi.Σlnyi r= {n.Σxi2 – (Σxi)2}{n.Σ(lnyi)2 – (Σlnyi)2} ߔ࿅ื s lny – lna ࣜ m m= ࣜ n n = aebx b ab!ቚืߥ த ࣜާ .Σxi ߥާو Σ ln y – ln b i a = exp իื b n ( ) n.Σx y – Σx .Σ y ( n.Σx – Σx ) iln i ln i i ߥ࿅ื c b = exp ߔ࿅ื s n.Σxilnyi – Σxi.Σlnyi r= {n.Σxi2 – (Σxi)2}{n.Σ(lnyi)2 – (Σlnyi)2} ࣜ m ࣜ n 2 i ( 2 ) i lny – lna m= lnb n = abx ֓ߥ۽ த ࣜާ .Σlnxi ߥާ Σ ln y – b i a = exp وիื b n ( ) n.Σlnxilnyi – Σlnxi.Σlnyi ߥ࿅ื c b = n.
n.Σlnxilnyi – Σlnxi.Σlnyi ߔ࿅ื s r = {n.Σ(lnxi)2 – (Σlnxi)2}{n.Σ(lnyi)2 – (Σlnyi)2} ࣜ m ࣜ n ln y – ln a b m=e n = a xb ௬ߥ த ࣜާ ߥާوիื b ߥ࿅ื c ߔ࿅ื s دกLj Sxx = Σ(xi ) – Σyi – b.Σxi–1 a= n Sxy b= Sxx Sxy r= Sxx.Syy (Σxi–1)2 (Σyi)2 Syy = Σyi – n n Σxi–1.
k ༇ࣜࣜ۶ઋ ᅚӹ઼־ષူූۛᇀࡍූ־ቺو Ӱࡧă 1!ഓሦဗืযو၂ߥާߥو ࠧߔ࿅ืă 2!ഓሦဗืযާߥوߥืڶو ࠧߔ࿅ืă 3!ޗযߥࣜॕ߷ሖ־ዮคࠩሦ ဗืযഗާߥوLjᆿѢሙ ާߥױᆊՌူූۛ ූ־461 ࡍوቺă ื 20 50 80 110 140 170 200 230 260 290 320 Ճዷԧኊ ६൩ SFH னԌၭᇗ၂ߥ ǖ N5(REG)1(Lin) ट༇ࣜ౷ଔහڊၭᇗཛྷ GsfrPgg; 1N(SETUP)dd2(FreqOff) พ൩Ⴥӊืয ; 20,3150m(DT) 50,4800m(DT) 80,6420m(DT) 110,7310m(DT) 140,7940m(DT) 170,8690m(DT) 200,8800m(DT) 230,9130m(DT) Ck-61 ቺDŽ৻Dž 3150 4800 6420 7310 7940 8690 8800 9130 9270 9310 9390
260,9270m(DT) 290,9310m(DT) 320,9390m(DT) 1!၂ߥ! ߥާوիื bǖ ! 12(S-VAR)1(VAR) ee1(a)E 4446575758 ߥ࿅ื cǖ ! 12(S-VAR)1(VAR) ee2(b)E 1887575758 12(S-VAR)1(VAR) ee3(r)E 0904793561 ߔ࿅ืǖ! 2!ߥืڶ ၭᇗߥืڶǖ 12(S-VAR)3(TYPE)2(Log) x 1 = ߥާوիื bǖ ! A12(S-VAR)1(VAR) ee1(a)E 20 –4209356544 ߥ࿅ื cǖ ! 12(S-VAR)1(VAR) ee2(b)E Ck-62 2425756228
ߔ࿅ืǖ! 12(S-VAR)1(VAR) ee3(r)E 0991493123 3!ᆊՌቺ ᄜཛྷوߥืڶߔ࿅ืوڶे॰ᅢ 2Ljຑჾෳᅋڶ ืߥ६ှቺᆊՌࣜă صx!>!461 ෫ഓ !ǖ 350 y 12(S-VAR) 350 1(VAR)d2(n)E 1000056129 ࢱืࣜDŽCBTFDž ე६ှᇀӊॎቲढ़මو۶Ճዷ෫Ljฑ࿘ၭᇗ CBTF ዷཛྷ ࣜனă k ࠨ६ှࢱืࣜ A ࠨቚڊയෛื࿅ ෳᅋᅚӫ઼ফوऒၭᇗയෛื࿅ ǖx)EFD* ᅋᅢ෨६ ቨLjM)IFY* ᅋᅢ෨६ቨLjl)CJO* ᅋᅢ۠६ቨLjࢪ i)PDU* ᅋᅢѹ६ቨă A ࢱืࣜ۶ઋ ۶ઋ ǖ! ࠨၭᇗ۠६ቨዷཛྷื࿅Ԍࣜ 23!,!23 Ck-63
Al(BIN)1+1E 1+ 1 10 b ื࿅ቚܻ DŽe ǖ෨६ቨLjI ǖ෨६ቨLjc ǖ۠६ቨLjp ǖѹ६ቨDž • พ൩ྐပืو࢙դූশۨؓྥ )Tzouby!FSSPS*ă • ᇀ CBTF னቲԥพ൩ืܖDŽဏืDžࠧቚืăࣜ ॕ߷وဏืԩܖटӇලണă A ෨६ቨืوพ൩ࣆࣜ۶ઋ ഋෳᅋᅚӫ઼ফوऒพ൩෨६ቨืຑၖეوዖாǖ -)B*-!$)C*-!w)D*-!s)E*-!c)F*-!t)G*/ ۶ઋ ǖ!ࠨၭᇗ෨६ቨዷཛྷื࿅Ԍࣜ 2G27!,!227 AM(HEX)1t(F)+1E 20 H A ᅘပࣜ۶ཙ ื࿅ ۠६ቨ ѹ६ቨ ෨६ቨ ෨६ቨ ᅘပ۶ཙ ቁื ǖ0 < x < 111111111 ืݘǖ1000000000 < x < 1111111111 ቁื ǖ0 < x < 3777777777 ืݘǖ4000000000 < x < 7777777777 –2147483648 < x < 2147483647 ቁื ǖ0 < x < 7FFFFFFF ืݘǖ80000000 < x < FFFF
k ࠨटࣜوॕ߷Ӱࡳཛྷದຓื࿅ صᅘࣜॕ߷෫Ѣ x)EFD*LjM)IFY*Ljl)CJO* ࢪ i)PDU*Ljݡॕ߷टӇӰࡳཛྷᄮืو࿅ă! ۶ઋ ǖ!ࠨट෨६ቨื 4121!Ӱࡳཛྷ۠६ቨĂѹ६ቨࣆ ෨६ቨြ Ax(DEC)30E 30 d l(BIN) 11110 b i(OCT) 36 o M(HEX) 1E H k!MPHJD Եوةෳᅋ ᇀ CBTF னቲLjX!ऒޢوӰཛྷ MPHJD Եوةऒă MPHJD ԵޮةᅘൻࡥޔஎLjᅋ d!ࠧ e!৹ᇀದࣺ६ှၭ ࡳă! k ࠨཛྷ໎ืڊቚืڊ࿅ พ൩ื෫Lj ఀ৹ჾቚڊქޔᅳصയෛื࿅ԥༀืو࿅ă! A ෳᅋࢱืቚࣜوڊ۶ઋ ۶ઋ ǖ!ࠨ६ှ 621!,!627 ࣜوLjԌჾ۠६ቨࣜॕ ߷ Al(BIN)X(LOGIC)d1(d) d5 + h5 5+X(LOGIC)d2(h)5E 1010 b Ck-65
k ࠨෳᅋࣃᆱࠧ۠६ቨݘ६ှࣜ ӊࣜಹ६ှ 21 DŽ21 Ӕ໎Dž۠و६ቨࣃᆱࠧݘ ืࣜăຑᅘ࿒۶ઋোჾ CJODŽ۠६ቨDžዷཛྷയෛื࿅ ६ှࣜă A ࣃࢵDŽboeDž ۵ࢵࣜوॕ߷ă! ۶ઋ ǖ!10102 and 11002 = 10002 1010X(LOGIC) 1(and)1100E 1000 b 11011 b 110 b A ࣃࠧDŽpsDž ۵ࠧࣜوॕ߷ă ۶ઋ ǖ!10112 or 110102 = 110112 1011X(LOGIC) 2(or)11010E A ᄖࣃࠧDŽypsDž ۵ᄖࣃࠧࣜوॕ߷ă ۶ઋ ǖ!10102 xor 11002 = 1102 1010X(LOGIC)e 1(xor)1100E Ck-66
A ᄖ܇ࣃࠧDŽyopsDž ۵ᄖࣃܱࠧࣜوॕ߷ă ۶ઋ ǖ!11112 xnor 1012 = 11111101012 1111X(LOGIC) 3(xnor)101E 1111110101 b 1111110101 b 1111010011 b A ԣ 0 ௬DŽOpuDž ۵ืوԣDŽ௬Dž ă ۶ઋ ǖ!Not(10102) = 11111101012 X(LOGIC)e2(Not) 1010)E A ܱDŽOfhDž ۵ื و3 وԣă ۶ઋ ǖ!Neg(1011012) = 11110100112 X(LOGIC)e3(Neg) 101101)E ֔ၠனDŽQSHNDž ఀ৹ჾᅋ QSHN னटე६ှࣜوዷ֑֔ၠԌү،ಲੂă ֔ၠቲ৹ჾҪࠆൌࠨᇀ DPNQĂDNQMYĂCBTFĂTE ࢪ SFH னቲ६ှࣜوă Ck-67
k ֔ၠனݣე A ֔ၠᆱှனوቚڊ ഹ֔ၠᇀ QSHN னቲךजࠧᆱှLj֔ޕدၠڞᅘქ ޔĐᆱှனđ Lj֔ၠᇀױனቲᆱှăDPNQĂDNQMYĂ CBTFĂTE ࢪ SFH ன৹ჾቚڊཛྷ֔ၠوᆱှனăნট กํLj ఀၖე৬֔ၠຑዶࣜوԌၭᇗᄮوᆱှனă! A ֔ၠ،ಹ ֔ၠ،ಹޮᅘ 4:1 ዖॎو൛ફLj৹ޥ֔ޔၠޮă֔ ၠ،ಹ،ୄࡍӯྐۨᆿү،ದຓ֔ၠă k ֔ၠךوज A ူ֔ၠךوज ۶ઋ ǖ!ࠨךजქޔटᄪ؍Ӱࡳཛྷੳ֔وၠDŽ2 ᄪ!>!؍ 3/65 ੳDž ? → A : A × 2.
4/!Ѣڶᄮᅢསෳᅋ֔وၠഘӬࠟืوዖऒă • ࡥஎණ־ᆱှனၭᇗԵةăᅋ e!ࠧ!d!ၭࡳԵ ࡥةஎ 2 ࠧࡥஎ 3ă MODE : COMP CMPLX 1 MODE : BASE SD REG 2 3 45 ࡥஎ 2 ࡥஎ 3 5/!Ѣڶᄮᅢეၭዷ֔ၠᆱှனืوዖ I ऒă! 000 • ᇀױઋቲLjᇀࡥஎ 2 ණၭᇗ b)DPNQ*ăױ෫ DPNQ ӇၭᇗዷཛྷᆱှனLjࣜಹ ट֔ၠӬࣃࡥஎă! ቺეƽ! ֔ၠوᆱှனქحӇቚڊLjӯྐۨݢӰăቝᅘᇀךजူ ֔وၠ෫ԯቚڊᆱှனă 6/!พ൩֔ၠă ? →A : A × 2. 54 010 • ࿒எढ़මࠨพ൩֔ၠă ֔ၠ ? → A : A × 2.54 ऒՃዷ !d(P-CMD)b(?) !~(→)-(A)w a-(A)*c.fe • !d)Q.
7/!พ൩֔ၠࡍLjѢ A!ࢪ !5)FYJU*ă • ეᆱှךݳݳज֔وၠ෫Ljഋᇀױ෫Ѣ w!֔ၠ ᆱှDŽSVO!QsphsbnDžࡥஎăᅘߔഉLjഋԸᆪĐ֔ၠ وᆱှđქॎDŽ࿒ะDž ă • ე۵իࣜوࡥஎ෫LjഋѢ ,b!६൩ DPNQ னă! A ᅘ֔ၠوӬࣃ 2/!Ѣ ,g)QSHN*b)FEJU* ֔ၠӬࣃ )FEJU! Qsphsbn* ࡥஎă 3/!ᅋืዖऒ b!ባ e ၭᇗࠆᅘეӬࣃ֔وၠ֔وၠഘă! 4/!ᅋ e!ࠧ!d!ᇀ֔ၠቲჰߞڑӶLjԌቖှຑၖეوՃ ዷӬࣃ֔ၠو൛ࢪࣩူ൛ă! • Ѣ f!৹ባ֔ၠو་LjۚѢ c!৹ባயཤă 5/!֔ၠӬࣃ༾ӛࡍLjѢ A!ࢪ !5)FYJU*ă k ֔ၠوᆱှ ֔ၠ৹ჾᇀ QSHN னࢪದຓனቲᆱှă! A ࠨᇀ QSHN னჾ༶وனቲᆱှ֔ၠ 2/!Ѣ 5ă 3/!ᅋืዖऒ b!ባ e ၭᇗ֔ၠഘԌቖှದ֔ၠă A ࠨᇀ QSHN னቲᆱှ֔ၠ 2/!Ѣ ,g)QSHN* QSHN னֽوࡥஎă 3/!Ѣ c)SVO*ă • ࣜಹ
4/!ᅋืዖऒ b!ባ e ၭᇗࠆᅘეᆱှ֔وၠ֔وၠഘă • ఀၭᇗ֔وၠഘቲ֔وၠӯӇቖှă! A!ؓྥဳྲ־෫ᄮԳടؑو Ѣ d ࢪ eăױ෫֔ၠوӬࣃࡥஎट־LjۚߞӶᅢ ؓྥդූوብLjჾӯുఀ६ှ၌ݢă k ֔ၠوකׅ ߹ቚ֔ڊၠഘӬࠟ৹ჾකׅᅘ֔وၠă A ࠨකׅቚ֔ڊၠഘቲ֔وၠ 2/!Ѣ ,g)QSHN* QSHN னֽوࡥஎă 3/!Ѣ d)EFM*ă ჻ࠆᅘ֔ၠืয֔وၠഘDŽQ2 ባ Q5Dž DELETE Pr o g r am P-1234 380 ෝᅨ֔ၠ،ಹ൛ફ 4/!ᅋืዖऒ b!ባ e ၭᇗეකׅದ֔ၠ֔وၠഘă • ࠆᅘఀݳݳක֔وׅၠ֔وၠഘӬ DELETE Pr o g r am ࠟసӫܻࠟوटဋLjༀ෫֔ၠ، P-1234 390 ಹوෝᅨ൛ફटᇜࣩă k தوพ൩ A ࠨพ൩ቚ֔ڊၠத 2/!֔صၠӬࣃࡥஎ෫LjѢ !d)Q.
ኢ ეพ൩ *;) ࠟܖ෫LjഋѢ wă A ৹ዷཛྷ֔ၠதพ൩ޢو ᇀիࣜو෫พ൩وහࠧڊቖှوದຓՃዷڞ৹ᅋ ዷ֔ၠதăᅘߔഉLjഋԸᆪ࿒ะĐதԸ৬đ ă k தԸ৬ ӊॎ࿈ढ़ම৹ჾᇀ֔ၠቲෳᅋޕوቸதă Ӷ໘ቲࠆᅘ g!وத৹ჾᇀѢ !d)Q.DNE* ࢪ 5 ࡍ־ࡥوஎණพ൩ă A ࢱӊࣜத g ?!DŽพ൩໗ܻDž ?!→!| Ӱફ ~ শۨ! ޢ! พ൩໗ܻĐ| Ӱફ ~?đԌटพ൩ืوݑ ޖქޔӰફă ?!→!A ۶ઋ! →!DŽӰફݑDž শۨ! | ӹؕ ; ?~!→!| Ӱફ ~ ޢ! टᅑዳՊᆐഓืوهޖݑᅚՊوӰફă A+5 → A ۶ઋ! :! DŽތܖଵDž শۨ! | ᅷশ ~ : | ᅷশ ~ : ...
^!) พ־த * শۨ! | ᅷশ ~^!| ᅷশ ~ ޢ! ᇃ֔ၠوቖှԌᇀوቖှॕ߷ă֔ၠ وቖှᄜױதۚᇃ෫LjQ!ܻ࢙ࠟ־ă ?!→!A : A2!^!Ans2 ۶ઋ! A ܇औኪჰத g Goto ~ Lbl শۨ! ޢ! ۶ઋ! Goto n : .... : Lbl n ࢪ Lbl n : ....
! ۶ઋ! শۨ 2ǖS!தዳՊوऔوಂࣱॕ߷ԥก ෫ದटӇॖงཛྷĐሪđ Ljᄜױቖှ | ᅷশ 2~Ljഹ ࡍก | ᅷশ 3~ ࣆದຓࡍوᅷশăS!தዳՊ وऔوಂࣱॕ߷ก෫ದटӇॖงཛྷĐ࣯đ Lj ᄜױ߹ | ᅷশ 2~Ljഹࡍቖှ | ᅷশ 3~ ࣆದຓ ࡍوᅷশă Lbl 1 : ? → A : A > 0 S!'(A)!^ Goto 1 =, ≠, >, >, <, <DŽߔ࿅ᆱܻDž ! শۨ! | ӹؕ ~!| ߔ࿅ᆱܻ ~!| ӹؕ ~! ޢ! ሦဗதಂࣱӫوӹؕLjԌ۵ქޔሪDŽ2Dž ࢪ࣯DŽ1Džوăᇀࣲ Jg ᅷশࢪ Xijmf ᅷশوȗ औӹؕș ෫Lj ሦဗதࠧܖቈத S ქಲෳᅋă ۶ઋ! ഋԸᆪ SDŽණะDž ! Lj Jg ᅷশ DŽ࿒ะDž ࣆ Xijmf ᅷশ DŽٞ 87 ოDžํوடă ኢ ሦဗதಂࣱӫوӹؕLjԌ۵ქޔሪDŽ2Džࢪ࣯DŽ1Dž وLjഹࡍटॕ߷ү،ᇀ Bot ቲă A ॕਈቨத 0!Jg ᅷশ g Jg ᅷশᅋᅢޗয Jg ቐࡍوӹؕDŽܖቈ
If~Then (~Else) ~IfEnd If!| औӹؕ ~!:!Then!| ӹؕ +~!: Else!| ӹؕ শۨ! +~!: IfEnd!: | ᅷশ ~!: ... •! صJg ࡍஎوऔᅷশཛྷሪ෫Lj֔ၠቖှ ޢ! Uifo فFmtf ቐࣺوᅷশLjഹࡍቖှ JgFoe ࡍஎ وᅷশă صJg ࡍஎوऔᅷশཛྷ࣯෫Lj֔ၠ ቖှ Fmtf ࡍஎوᅷশࡍቖှ JgFoe ࡍஎوᅷশă • !Fmtfȗӹؕș৹ჾෛଞă • !Ӥၙࠆᅘ JgFoe ǖ ȗᅷশș ăटದෛଞԥ࢙դූ ؓྥLj دJg ᅷশࡍஎ֔وၠ৹࢙դූᄌ ԥوفॕ߷ă ۶ઋ 2! ? → A : If A < 10 : Then 10A ^ Else 9A ^ IfEnd : Ans×1.05 ۶ઋ 3! ? → A : If A > 0 : Then A × 10 → A : IfEnd : Ans×1.
ޢ! ۶ઋ! ۴ݒቖှ Gps فOfyu ቐࣺوᅷশ෫LjਈቨӰ ફटLj୧ቖှ 2 ״ӯࣩ 2ăصਈቨ ؕفॕา෫Lj֔ၠባ Ofyu ࡍஎوᅷশቖ ှă߷ Ofyu ࡍஎୣᅘᅷশLj֔ၠӯቛቖှă For 1 → A To 10 : A2 → B : B ^ Next For~To~Step~Next For!| ӹؕ ) *~!→!| Ӱફ ) ਈቨӰફ *~! শۨ! To!| ӹؕ ) ॕา *~!Step!| ӹؕ ) ԧ *~!;!| ᅷ শ ~!; ...!| ᅷশ ~!;!Next : .... ޢ! ۴ݒቖှ Gps فOfyu ቐࣺوᅷশ෫LjਈቨӰ ફटLj୧ቖှ 2 ״ӯࣩԧืăׅ ױ٧ቐ༶Ljױதᅳ For~To~Next ༀă For 1 → A To 10 Step 0.
A ֔ၠਈቨத g Break .. : {Then ; Else ; S } Break : .. শۨ! ޢ! ױதቨቲ ڱGps ࢪ Xijmf ၹLjԌባ࿒ქ ޔதăիLjױதᅋᇀ Uifo ᅷশቲLj໗ޥ Csfbl وऔă ?!→ A : While A > 0 : If A > 2 : Then Break : ۶ઋ! IfEnd : WhileEnd : A ^ A හብத ሦဗதޢوᅳࣜಹޕوቸහብༀăᅘߔഉLjഋ Ըᆪٞ : ოණوĐࣜಹහብđ ă ቺეƽ! ڶᅢᅘဗහብதLj࣊ෳ֔ၠᆱှॕาષLjݡதຑዶو හብटၦᅘပă ऻةڪத Deg, Rad, Gra! (COMP, CMPLX, SD, REG)! .. : Deg : .. শۨ! .. : Rad : .. .. : Gra : ..
ြத Fix! (COMP, CMPLX, SD, REG)! শۨ! Ճዷ! ޢ! .. : Fix {n} : .. )n!>!1 ባ : وሿื * !,(SETUP)eb(Fix)a ባ j ױத߈ڊพࣜو־ॕ߷وဏืื DŽ1 ባ :Dž ă! Sci! (COMP, CMPLX, SD, REG)! শۨ! Ճዷ! ޢ! .. : Sci {n} : .. )n!>!1 ባ : وሿื * !,(SETUP)ec(Sci)a ባ j ױத߈ڊพࣜو־ॕ߷وᅘပืDŽ2 ባ 21Dž ă Ѣ !,)TFUVQ*ec)Tdj* ࡍѢ a!ቚ ڊ21 ᅘပืዖă ! Norm! (COMP, CMPLX, SD, REG)! .. : Norm {1 ; 2} : .. শۨ! Ճዷ! !,(SETUP)ed(Norm)b ࢪ c ޢ! ױதቚࣜڊॕ߷وพ־กෳᅋ Opsn2 ࡱก ෳᅋ Opsn3ă ༇ࣜ౷ଔத FreqOn, FreqOff! (SD, REG) ..
A അׅத ClrMemory! (COMP, CMPLX, BASE) .. : ClrMemory : .. শۨ! Ճዷ! !j(CLR)b(Mem) ޢ! ױதटຑᅘӰફഅׅཛྷă ኢ ეഅׅქޔቚڊӰફ෫Ljᅋ 1!→!| Ӱફ ~ă ClrStat! (SD, REG)! .. : ClrStat : .. শۨ! Ճዷ! !j(CLR)b(Stat) ޢ! ױதഅׅү،ᇀ،ಹቲوຑᅘ༇ࣜჅӊื যă! A ڢ،ಹத M+, M–! (COMP, CMPLX, BASE) .. : | ӹؕ ~ M+ : ..!0!.. :!| ӹؕ ~!M– : .. শۨ! Ճዷ! l / !l(M–) M+ टӹؕوࣩڢف،ಹቲLjۚ M– ޢ! ڢ،ಹऋണӹؕوă A ල൩த )Soe* Rnd(! শۨ! Ճዷ! ޢ! (COMP, CMPLX, SD, REG)! .. :!| ӹؕ ~!: Rnd(Ans : ..
A ื࿅த Dec, Hex, Bin, Oct! (BASE) .. : Dec : .. / .. : Hex : .. / .. : Bixn : .. / .. : Oct : .. শۨ! Ճዷ! x(DEC) / M(HEX) / l(BIN) / I(OCT) ޢ! ሦဗதቚࣜืࢱڊืو࿅ă A ༇ࣜืযพ൩த DT! (SD, REG)! শۨ! .. : | ӹؕDŽx Dž~ ; | ӹؕDŽGsfr Dž~!EU : .. ! ///////TE னLjGsfrPo .. : | ӹؕDŽx Dž~!EU : ..!//////TE னLjGsfrPgg .. : | ӹؕDŽx Dž~ , | ӹؕDŽy Dž~ ; | ӹؕDŽGsfr Dž~!EU : ..! /////SFH ன -!GsfrPo .. : | ӹؕDŽx Dž~ , | ӹؕDŽy Dž~!EU : ..
• ݒDŽ!j)DMS*d)Bmm*wDž • හብဳྲഅׅDŽ!j)DMS*c)Tfuvq*wDž ݛଆ k ࣜوᅍ࿘๋ၠ ࣜಹޗয࿒ᅍ࿘๋ၠ६ှఀพ൩ࣜوă • ࢱӊණLjࣜกѢሙዳባᅚ๋وၠ६ှă • ਸ਼ᅘਸ਼ࠟࣜوᅍ࿘ă! ๋ၠ ࣜ੮ျ ํட 2 ؞ਸ਼ࠟืࠉو Pol(, Rec(, ∫(, d/dx(, sin(, cos(, tan(, sin–1(, cos–1(, tan–1(, sinh(, cosh(, tanh(, sinh–1(, cosh–1(, tanh–1(, log(, ln(, e^(, 10^(, '(, 3'(, arg(, Abs(, Conjg(, Not(, Neg(, Rnd( 3 எᅘื ืࠉوx2, x3, x–1, x!, ° ´ ˝, °, r, g x ֓۽Lj֓ޗ۽ ^(, '( % ҇ܖӔ 4 ืܖ a b/c (–) ) * ࠟݘ 5 ብܻࠟ d, h, b, o!) ื࿅ܻࠟ * 6 ༇ࣜࣜࣜ m, n, m1, m2 Ck-81
๋ၠ ࣜ੮ျ 7 ෛଞࠟ֓و 8 9 : 21 22 23 ํட ᇀ࿒઼ቐࠟ֓و৹ჾ ෛଞ ǖ π-!eLjӰફDŽ2π, 5A, πA, 2i, ٌDž Lj؞ਸ਼ࠟืࠉوDŽ2'(3), Asin(30), ٌ * ჾࣆብܻࠟ DŽׅࠟݘ༶Dž ઼Ljዩࠩ! nPr, nCr ܻࠟืݒ ∠ ×, ÷ ֓ۨLj!ׅۨ +, − ࣩۨLjऋۨ =, ≠, >, <, >, < ߔ࿅ᆱܻ and ࣃࢵ ࣃࠧLjᄖࣃࠧLj or, xor, xnor ᄖ܇ࣃࠧ ኢ • ߷ࣜቲࠆᅘݘLjᇘݘ৹ၖეਸ਼ᇀਸ਼ࠟቲăઋ Lj߷ეࣜlj3 و౿۽Ljᇘၖეพ൩ ǖ)lj3*3ă!ᄜཛྷ x3!กქޔᅘብืืࠉوDŽණᅍ࿘ ڪ3DžLjوืࠉױ ᅍ࿘ݽڪᅢࠟݘLjࠟݘཛྷብܻࠟDŽᅍ࿘ ڪ5Dž ă –22 = –4 ! -cxw! (–2)2 = 4 (-c)xw! • ࿒எوઋዓຑLjෛଞܻࠟوۨ֓وᅍ࿘๋ၠݽᅢ؞ ܻׅࠟۨࠧۨ֓وă 1 ÷ 2π = 1 = 0.
k ࣜ۶ཙĂืࣆॽڪ ࿒ӹ઼־ષࣜ۶ཙDŽืพ൩ࠧพ־۶ཙDž Ăԩࣜ ෳᅋืوLjჾࣆࣜॽڪă ࣜ۶ཙ Ġ2ġ21 ::!ባ Ġ:/:::::::::ġ21::!ࢪ 1 ԩࣜ 26 ქґੂํLjᇀქࣜ״ቲLjٞ 21 ॽو ڪཛྷ Ġ2ăቚืြࣜॕ߷ྥوཛྷᇀ ॽڪ ཤืوዮࡍᅘပืණ Ġ2ăᇀઘၦࣜ ߹֔ቲྥ࢙ࢵ੩ă — A ࠉืࣜพ൩۶ཙࠧॽڪ ࠉื sinx cosx พ൩۶ཙ 9 DEG 0 < | x | < 9×10 RAD 0 < | x | < 157079632.7 10 GRA 0 < | x | < 1×10 | صׅx | = (2n–1)×90 ෫ቐ༶Ljᅳ sinx ༀă | صׅx | = (2n–1)×π/2 ෫ቐ༶Ljᅳ sinx RAD ༀă | صׅx | = (2n–1)×100 ෫ቐ༶Ljᅳ sinx GRA ༀă DEG tanx sin–1x cos–1x tan–1x sinhx coshx 0<|x|<1 0 < | x | < 9.
ࠉื พ൩۶ཙ sinh–1x 0 < | x | < 4.999999999×1099 cosh–1x 1 < x < 4.999999999×1099 tanhx 0 < | x | < 9.999999999×1099 tanh–1x 0 < | x | < 9.999999999×10–1 logx/lnx 0 < x < 9.999999999×1099 10x –9.999999999×1099 < x < 99.99999999 ex –9.999999999×1099 < x < 230.
ࠉื ^(xy) พ൩۶ཙ x > 0: –1×10100 < ylog x < 100 x = 0: y > 0 x < 0: y = n, m (m, n กሿื ) 2n+1 دก : –1×10100 < ylog | x | < 100 x' y y > 0: x ≠ 0, –1×10100 < 1/xlogy < 100 y = 0: x > 0 y < 0: x = 2n+1, 2n+1 (m ≠ 0; m, n กሿื ) m دก : –1×10100 < x log | y | < 100 a b/c ሿืLjܖዓࣆܖாࣜࠩืوӤၙᇀ 10 ჾ DŽದቲҪਸ਼ܻޒܖDž ă y, 3', x!, nPr, nCr!ျࠉืၖეઘၦԩࣜLj • ^(xy), x' ᄜױᇀࣜޕቲۢූྥو࢙੩ࢵă • ᇀࠉืوನ٧ࠧߑ٧ݛ॰ྥᅘࢵ੩ࠧӰوؙഃဂă k ؓྥဳྲ ߷ࣜմ־ષࣜಹوڪLjࢪ ߷६ှષԥᆰၛوՃዷLjࡥஎණट־ ؓྥဳྲă Mat h ERROR ؓྥဳྲ۶ઋ A ؓྥဳྲوഅׅ
• Ѣ A!৹അූۢྥׅؓఀพ൩ࣜوӹؕăഋኢᄌLj դූؓྥࣜوӹؕԥ࢙ࠆᇀࣜઈቲă! A ؓྥဳྲԸ৬ ӊॎ઼־ષࣜಹຑوຑᅘؓྥဳྲLjದᆓᄜࣆӨஊ ؑă Math ERRORDŽࣜؓྥDž ᆓᄜ • ቲࣺࣜॕ߷ࢪዮቷࣜॕ߷մ־ષ൛ၛ ࣜو۶ཙă • พ൩ืوմ־ષ൛ၛوพ൩۶ཙă • وۨ܇ืᆱDŽׅჾٌDž ă! • ߷ၖეLjഋंՓพ൩ืوԌऋඵืă ڶՉ • ෳᅋڢ،ಹࢪӰફዷཛྷࠉืوԸื෫Lj Ӥၙവ്،ಹࢪӰફᇀوืࠉݡ൛ၛ ۶ཙቐă ᅘߔืযو൛ၛพ൩۶ཙํوடLjഋԸᆪٞ 94 ოණوĐࣜ ۶ཙĂืࣆॽڪđქॎă! Stack ERRORDŽڳᇿؓྥDž ᆓᄜ ڶՉ ࣜෳืዖڳᇿࢪதڳᇿմ־ષڪă • ईࡧࣜӹؕLjෳದԥմڳ־ᇿو൛ફă • ฎटࣜތܖཛྷࢪޔޔჾණوԩܖă Syntax ERRORDŽশۨؓྥDž ᆓᄜ ڶՉ ࣜޏᅘོ໘ă ंՓশۨԌ६ှຑၖეޚوቁă
Argument ERRORDŽԸืؓྥDž ᆓᄜ ڶՉ ࣜᇀԸืوෳᅋණᅘོ໘ă ंՓԸืوෳᅋഉਦԌ६ှຑၖეޚوቁă Time OutDŽմ෫Džؓྥ ᆓᄜ ڶՉ صوཔࣜܖࢵࢪܖॕาLjدསୄዣॕา औă པࣜܖࢵࢪܖ ǖժฎᇜࣩ!tol!ăഋኢᄌ ǖ ױՃዷࡱ࢙ऩّॖॽوവڪă Data FullDŽืয჻ୄDž ᆓᄜ ڶՉ ᇀ TE னࢪ SFH னቲLjص،ಹቲ჻ү ،ᅘຑืڊફණوჅӊืয෫Ljฎ༐ၦ ү،Ⴥӊืযă ഋटჅӊืযืوફቨᇀ൛ၛڪቐă ᅘߔഉLjഋԸᆪٞ 56 ოණوĐืযو พ൩ืڪđ ă Go ERRORDŽኪჰؓྥDž ᆓᄜ ڶՉ ֔ၠDŽᇀ QSHN னቲजوDžቲᅘĐHpup!nđ தLjدୣᅘᄮوĐMcm!nđӶă ࣩქޔĐMcm!nđӶੂైࠩĐHpup!nđதLj ࢪකׅᄮوĐHpup!nđதă Ck-87
k! ᇀჳกࣜಹۢූષ߆ሓቐ /// ᇀࣜ߹֔ቲۢූષؓྥLjࢪࣜॕ߷մ־ᄌ༶෫Ljഋቖ ှ࿒ะՃዷă߷ქԧསॖৈོ໘Ljᇘჰባ࿒ქԧăഋ ኢᄌLjᇀ६ှሦဗՃዷቐLjഋڶቺეืয६ှӄܝă! 1!ंՓࣜӹؕLjവ്ದกܱࠆᅘൌࠨؓྥă 2!വ്ఀე६ှࣜوกᇀቁവوனቲ६ှوă 3!߷ණะՃዷསෳࣜࢎݒቁիLjᇘഋѢ p ऒă ࣜಹ࢙ᇀಲڑ෫ڶದዔኴຢ६ှዔंă߷ࣜ ಹۢષོ໘Ljದट۵ࣜனԌݒᆓֽയෛై ብLjԌೲഅׅ،ಹቲوຑᅘืযă 4!߷ٞ 3 ԧསෳՃዷࢎݒቁիLjഋ६ှ࿒઼ѢऒՃ ዷֽࡧຑᅘனࠧහ ڊǖ !j(CLR)c(Setup)wă ٫ᆚეഓ A ٫֠ࡳޚو ࣜಹืዖӰѣӹ٫֠٫ԥዣăᇀ٫֠٫ԥዣ ෫ၦෳᅋࣜಹ࢙ـቤᆱှᄖիăصืዖӰѣ෫Lj ᄮॳਜࡳޚ٫֠ă࣊ෳࣜಹᆱှቁիLjნᄮݡ୧ൻ௰ባ ඵࡳޚქ״٫֠ă ቺეƽ! ဤ࿒٫֠Lj࢙ෳࣜಹوຑᅘ،ಹ൛ഩԩӇකׅă Ck-88
2/!Ѣ!1A)PGG*!ڱࣜಹ٫ᆚă • ეവүఀᇀࡳޚ٫֠෫ԥ࢙ྐᄌቲे ٫ᆚLjഋटү৷ࡤࣜفಹوڭă 3/!Ѣ༐ቲຑဤ࿒٫֠ࠪݥԌࡳޚ٫֠Ljഋ ቷവүቁവ܅ብ٫֠ቁࣁ!),*!ࠧ!ࣁݘ ) .
ᅘڠᅘࠀྡቬࢪᆐண֎ࣆࠆફ ү ෳᅋ ಜ ᅘڠᅘࠀྡቬࢪᆐ ԩऔண֎ ۂឫ ۂឫ۠ ೆ ޫ ᮣ ࣱޓ ખӉ Ӊ )Qc* )Ih* )De* )Ds)WJ** )QCC* )QCEF* ෯ ਠ Ő Ő Ő Ő Ő Ő ෯ኰࢱғĄ ġ Ő Ő ӹ Ő Ő Ő ӹ Ő ġ Ő Ő Ő Ő ഩ।ฮ ġ Ő Ő Ő Ő Ő Ő Ő Ő Ő Ő Ő DE.S 備৬ ǖ Őǖ !ӹݡᅘڠᅘࠀྡቬᇀݡԩऔຑᅘোቬԮ ቲࠆوફোᇀ HC0U37683.3122 Ӷኼߢوڊ ફეഓჾ࿒ă ġǖ !ӹݡᅘڠᅘࠀྡቬባඵᇀݡԩऔوஹქো ቬԮቲࠆوફմ ־HC0U37683.
ቨᇒާ๖ ǖྩఛ٫ዓ৶࣒DŽቲDžᅘާ๖ ٜāā ǖߟڍෛቲชࢨসۢഘ৶࣒ྩلؙ ާ๖ண֎ ǖྩఛDŽቲ߶Džᄁᅘާ๖ ኢՋٜ ǖቲ߶DŽණ߽DžዔᅑᄁฎႵഘݙ໎ҽଁ 497 ࠟ ٞქՍ ԩ Ck-91
Manufacturer: CASIO COMPUTER CO., LTD.
CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan SA1404-A Printed in China դ౹Ӷኼࠟ ǖHC0U5:78.2::6 Ҕ ״ǖ3125 ௰ 5 ᆨ!!!!!ቲ߶ᄩฺ © 2014 CASIO COMPUTER CO., LTD.