Th fx-3650P II CASIO http://edu.casio.com ! " CASIO http://edu.casio.
! *, # - . ) ,/ !# " CASIO k ... + $% " .0 ! 1 + " .0 ! " 2 0 1 1 + $ + 0 "! " " .0 ! 1 0" $ & 3. !... 2 0 1 + 4 0 "! " " .0 ! 1 $ + ! & 0 k " # $ % $ ! # ! " + " + " & #" + ! " " .0 ! & &5 + . 0 .
• ! '() $ $ ( ! " & %$ $ " & &(* + , (LR44 (GPA76)) 1 ) 4 &5 *$ " .0 !% *0 1 ' " -.0 0 + .#"1 ) $ " .0 ! 1 ' + $% " .
$ ...........................................................................................................................1 ! '! 9 ! < & ...............................................................................................1 ! '! ........................................................................................................2 $ ) !8... .....................................................................................................
! "... k \ 0 O " .0 ! ! + 0 , ( 5) $% " + *0 + + 4'&@0 " % ! + 2 + ! 4 0 + "% 0 4 $ "& ! ! " 4 1. 0 !N(SETUP) db(Contrast) • 4 & ! & D!:# 2. $% d 1 ' e & ! ! " 4 3.
7 1K 3 A 8 LOGIC k " < : 10" : ! < : ! ! ^" 1K 3 " 0 a 1 0 ( 1& A) 0 +$ 0 BASE 0 +$ 0 BASE 9 3(" H ' ) !8 " .0 ! 21 0" #" . 4 + &Z 1 '- ,$ 4 0 2× ( 5+ 4 ) – 2× - 3 . 4 &Z 24 - , : 283% [ <, + "; 3. ! " + " # & D!:# 4 ! " " .0 ! 1 0" 0 ,&\44* #" + " .
k $ #" + " .0 ! 2$% #" + . * 1 ' * . , 1 ' ; + 2 #" + 0 4 #" + 0 0 !,(SETUP) 4 #" + & ' 0 4 0 + 2$% d 1 ' e & ' + " 4 + "; '%* !& * 90` = S2 0 = 100 1 0 !& * "( 0 1 0 "&3 () " : !,b(Deg) !,c(Rad) !,d(Gra) '%* ) ! (" %% & ) 4 1 +" ( .
'%* %% ) ! # %% ) ! # . 09 . 0 %."! # "&3 () " : !,eeeb(a+bi) !,eeec(r∠ ) '%* $ ! =" ( = $ $ ! =" $% 2 +$% 2 k "&3 () " : !,ddb(FreqOn) !,ddc(FreqOff) % $ C ) !8 ' $ $ + ! # ' *! " + " # #" + 0 ,&\44* 1 ' #" + + "; 1 ' #" + " .0 ! & &5 0 " # 0 , ...........................................................
H 1K 3 ( ! (& M $ 3(" "! % (sin, cos, ', a a) " .0 ! * &Z \" % " . ( " " 1 0" + & # "4 + &Z + .
• [ <, & D 4 + 2$% d & " 1 ' 4 0 • 4 & " $ " + ! " . 4 &4 "! ! " 4 :" 2 0 4 [ <, "0 ! [ <, & D 4 + 2$% e & "! 1 ' 4 0 • 4 # + 2 0 f ! & "0 *0! " . 4 c ! & "0 " *0 0 ) ! '(" H (0%$3) $ !,' + &Z . 4 " ,. ( .
% "&3 () $ ! & : " 1 ! 369 × × 12 $ &5 369 × 12 01 369**12 ddD 0 ! 369**12 dddD 0 "&3 () 369 ×× 12I 369 ×I12 369 ×× 12 369 × 12 9 3 +$ 01 $% d 1 ' e & "! ! " " " 1 ! 0 D " # 1 $ + " 2 " $ 0 ! & " " " 1 ! 4 # $ + " 2 " 9 "&3 () 9 3 4$ 1 +$4 + 0 01 1 + " .
! " & + , 1 0"$ ! # 2 0 $ * 0 ,! " " .0 ! 0 BASE 1 +4' ' * &5 + " k ) !8 8 $ , ! ,.
k ) !8 3 # $3 &Z + [ <, & (%) $ + 0 &5 + & $ ! & ) !8 3 # $3 $ ! & (" 1: 2 % = 0.02 2 ) ( 100 $ ! & (" 2: 150 × 20% = 30 2!((%)w 002 150*20 30 20 ) (150 × 100 !((%)w $ ! & (" 3: 660 .0 &5 & ! " 880? 660/880 !((%)w 75 $ ! & (" 4: .
k ) !8 M , , 1\ ( I %) H I % &1 # ] &Z + !] . &5 0 " # { "( } $ { .&0 } $ { . .&0 } $ $ ! & : " &Z + 2°30´30˝ 2$30$30$w 2 ˚ 30 ˚ 30 ˚ 2 ˚ 30 ˚ 30 • + "$ + + "( 1 ' .&0 + + + 0 " + 4' &5 ( $ ! & ) !8 I % , !] . &1 + & 4# '$ - 3 &5 !] . • !] . "4 • , !] . !] .
' + " 0 -+ ! & ' . , "1 + ' #" [ <, $ 4'& D + 4 1 0" + " " ! +0 + " ($ + + ) ! "! 0 +$ !,' # [ <, #& D!:# 0 c " ( + &) -+ ! & ' . , " ) :! • ! & ' . , "4'2 * #" + 0 p, & 0 , 1 ' $0 + • # & ' . , " 4 0 + , . $ !,' & ' .
9 Ans ) !8$ C & $C $ $ ! & : " - 3! " 3 × 4 0 30 12 3*4w ( + ) /30w Ans ÷ 30 04 0 / &Z Ans 0 . & $* $ , \" % . $ " ( 8) Ans 4'2 $% &5 . 0 . 9 '$ , + &Z \" % + " 0 1 0 w 9 Ans ) !8 !&$ ! $ ! & : " $% - 3! " 123 + 456 $ , %*0 :"0 "1 0"! " + " 123 + 456 = 579 789 – 579 = 210 k 123+456w 579 789-Kw 210 !& ! ) ' + 4 .
% !& ! ) ' ' + " + + &Z - ,1 0" + 4 0 1m(M–) + # 4 + 4 . ' (M) $ ! & : " - 3! " 3 × 2 4 + 4 . ' (M) 3*21m(M–) 6 & $* 0 m 1m(M–) !,' - ,1 0" + 4 . + # 4 + 4 . ' ) :! + & D + 4 + 0 m 1m(M–) "4 , 4 .# 1 0 w - , ( :"2 . 4 + 4 . ') +$%+! ! " + 4 .
k % !& ! ) ( " + & # + " ! $ + 4 . ', + 4 1& 1 ' + 4 19(CLR)1(Mem)w • + + " #" + ! " " .0 ! 0 A 1 0 w $ ! # ! " ! "-/ ) 0 0 1 ) \" % 1 0"$ ! # 2$% 0 $ * 0 ,! " " .0 ! 0 BASE 1 +4' ' * &5 + " ! '! ) % ) !81K 3 ( ! (& M $ 3 • , & ' &0 \" % " .
& $* • \" % + # 2$% 0 $ 0 CMPLX 0 . 4' " + &5 4 %." + " %+ 2 , i × sin(30) 0 1 + + 2 , sin(1 + i ) • + * + "$% $ , + * 2 $ &5 + .
$ ! & (" 1: log216 = 4, log16 = 1.204119983 4 l2,16)E l16)E l o g ( 16 ) 1204119983 0$ &5 ] 10 ( . : [) + ' *] $ ! & (" 2: ln 90 (loge 90) = 4.49980967 I90)E k 1K 449980967 3 & ) '1K 3 & ) 0!& 83 ' H {n} x2.................................................{n}2 {n} x3.................................................{n}3 {n} x–1 ...............................................{n}–1 {(m)}^({n}) ..................................
k 9 (9 d ↔ 9 !) " .0 !! " + 21& " & ' + " . 09 1 ' . 0 %."! # 0 o o . 09 (Rec) . 0 %."! # (Pol) 0!& 83 ' H 1& " . 09 &5 . 0 %."! # (Pol) Pol(x, y) x: + x ! " . 09 y: + y ! " . 09 1& " . 0 %."! # &5 . 09 (Rec) Rec(r, ) r: + r ! " . 0 %."! # : + ! " . 0 %."! # $ ! & (" 1: " 1& " . 09 (' 2, ' 2) &5 . 0 %."! # 1+(Pol)92) ( + * : Deg) ,92))E (0 + ! " θ) t,(Y) $ ! & (" 2: " 1& " .
k ) !8 9 ^3 ' ) !8 *9 ^3 ) !8 9 ^3 " .0 !! " + 2 ,& . 3 0 0 $% .3 Gauss-Kronrod 0!& 83 ' H ∫ ( f (x), a, b, tol) f (x): a: b: tol: \" % ! " X (&Z \" % $% 0 1& X) ! 04 0 + "! " . ,& . 3 ! 04 0 ! " . ,& . 3 . 0 0 • . # 2 ' 0 $ , # 4'$% + 0 &5 1 × 10–5 e $ ! & : ∫1 In( x ) = 1 fIa0(X)),1,aI(e))E ∫ ( I n ( X ) , 1, e ) 1 ) !8 *9 ^3 " .
! '! d9 ' ) % ) !8 9 ^3 • 0 & . ,& . 3 "$% $ , 1 • f(x) 0 a x b ( %+ 0 $ , ∫0 3x2 – 2 = –1) ,4' 0 - 3 &5 • 0 $ , 4 + . + + 0 $ ! 1 0"! -.0 0& D!:# " .0 ! #" !# :# + ' 0! " f(x) 1 ' . ,! "& . 3 ! '! d9 ' ) % ) !8 *9 ^3 • ' &Z + tol 1 $ + 2 + ! (convergence) 0 + ! " tol 4' 0 & 0 .
k 1K 3 + x!, Abs(, Ran#, nPr, nCr, Rnd( \" % x!, nPr 1 ' nCr 2$% 0 $ 0 CMPLX 1 + + 2$% . &5 4 %." 1 ( "& (!) ,: {n}! ({n} " &5 4 3 % . 0) $ ! & : (5 + 3)! (5+3) 1X(x!)E 40320 % 83 (Abs) ,4 4 ." Abs( %+ $ 2 + , 0 + ""+ 0 \" % # 2$% 0 $ 0 CMPLX + , (! 0) ! "4 %." 0 ' 04 “ ,4 %.
"& % " & (nPr)/ (nCr) ,: {n}P{m}, {n}C{m} $ ! & : 2 " & 1 '4 0 + 0 1 $ *+ 4 10 ? 101*(nPr)4E 5040 101/(nCr)4E 210 1K 3 K M2 (Rnd) + 2$% \" % &\0 (< (Rnd) &\0 (
$ 0 1 103 (ENG) " " .( (ENG) &5 1 0"4 $ &1 ! "- , ' + "4 + ' + " 1 2:" 10 ! "! " 10 :" 0 & .4' &5 ! ,! " " " .( & ' 0 " &1 ENG 1 ' ENG 0 CMPLX + * $% " " .( k $ ! & ) !8 ENG $ ! & (" 1: " 1& " 1234 &5 &1 " " .( 0 ENG 1234 1234 03 1234 00 1234E W W $ ! & (" 2: " 1& " 123 &5 &1 " " .
H ) ! # %%9 ! $ ! & : " &Z 5 ∠ 30 51-(∠)30 5 30I ) :! &Z . $ ' * + * 0 " #" + + * $ !,' # ! " " .0 ! k ) !8 ) ! # " .0 ! ,- 3 &5 4 %." 1 [ <, R⇔I 4'& D!:# * 0 ! ! " 4 1 '4'1 0" 9 ' + 4 ." + # $ 1 $ ' + " 1 0"- + 4 ."1 ' + 4.
k $ ! & ) !8 %%9 d (a+bi) 1,(SETUP)eee1(a+bi) 3 + i) = 2' 3 + 2i = 3.464101615 + 2i $ ! & (" 1: 2 × (' 2*(93)+W(i))E 3464101615 1E(Re⇔Im) 2 92)1-(∠) 45E 1 1 $ ! & (" 2: ' 2 ∠ 45 = 1 + 1i ( + * : Deg) 1E(Re⇔Im) %%9 ! (r∠ ) 1,(SETUP)eee2(r∠ ) 3 + i) = 2' 3 + 2i = 4 ∠ 30 $ ! & (" 1: 2 × (' 2*(93)+W(i))E 1E(Re⇔Im) 4 30 [ <, ∠ & D!:# 1 0" + $ ! & (" 2: 1 + 1i = 1.
k % 83 ' 3 ! $3 (Abs, arg) $ ! & : 1 4. ) + ,1 ' . ! " 2 + 2i ( + * : Deg) แกนจินตภาพ b=2 o + ,: 1)(Abs)2+2W(i))E . : 1((arg)2+2W(i))E k a=2 แกนจริง 2828427125 45 % ) %% ) ! # '%* %%9 d % ) !8 &Z 1-('a+bi) ! " , 2 ∠ 45 = 2 + 2i ( + * : Deg) $ ! & : 2' 292)1-(∠)45 1-('a+bi)E 1E(Re⇔Im) 2 2 '%* %%9 ! % ) !8 &Z 1+('r∠ ) ! " , 2 ∠ 45 = 2.
! "0 8 (SD/REG) k * $ ! & ) !8( = $ H * $ ! & + 2&Z ! *+ + " 0 #" $% 2 " 2. . (FreqOn) +$% 2 (FreqOff) #" + . ! " " .0 ! FreqOn + 2 .3 &Z + " $% #" + 2 " 2. .$ 4 #" + ( 7) ) ! * & (" H 4 " *0! " ! + &Z 0 !:# + + 0 $% 2 (FreqOn) +$% 2 (FreqOff) 0 SD .............
25.51,(;)6m(DT) 26.51,(;)2m(DT) L i ne = 3 0 ! =" (FreqOff) $ , #$ &Z ! 1 + ' 1 0"0 + " {x1}m(DT) {x2}m(DT) ...
L i ne = 1m(CL) 2 & $* • + & # &5 ) 1 0" <,'! "! #" + 1 ' " ! x1: 24.5 Freq1: 4 x2: 25.5 Freq2: 6 x3: 26.5 Freq3: 2 !:# x1: 24.5 x2: 26.5 Freq1: 4 Freq2: 2 • #" + 2 " 2. .
k ) !8( = $ %%$ ! $ , + "$ ! # ! # 1 $ 0 , &5 REG ) !8 = = & 1 + ' #" + ! + 0 REG + " % .0! " , 202 + " $% ) !8 = = & 1. ! + 0 REG • 4 # . , 202 4'& D!:# & ' 0 " 4 0 + 2$% d 1 ' e & ' + " 4 + "; 2. $% " + "$0 + " :" + & # , 202 + " = = & " : "&3 " : 1 %.
0 ! =" (FreqOff) $ , #$ &Z ! 1 + ' 1 0"0 + " {x1},{y1} m(DT) {x2},{y2} m(DT) {xn},{yn} m(DT) * $ ! & K *% "4 &Z ! *+ + " + 2 0 c 0 ! 0 + &Z ! & [ <, $ 1 0" + " ! + 4 *+ + " 1 0" + 4 $ !,' # [ <, ` 1 0" + " ! + # #" + 2 " 2. .
Ȉx2y Ȉx3 11(S-SUM)d1 - ! "- , ' + "! x ! " *+ + " " " ! y ! " *+ + " Σx2y = Σxi2yi Ȉx4 11(S-SUM)d2 - ! "! x ! " *+ + " " Σx3 = Σxi3 11(S-SUM)d3 - ! "! x ! " *+ + " " Σx4 = Σxi4 ) d " & ' %" & % $ I ( VAR) x̄ σx 12(S-VAR)1(VAR)1 + 9 ! "! x ! " *+ + " + " ] ! "& '% ! "! x ! " *+ + " σx = Σ(xi – o) Σx o= ni sx 2 n ȳ 12(S-VAR)1(VAR)3 +
12(S-VAR)1(VAR)ee3 r + & ' . 3. 3 r xˆ 12(S-VAR)1(VAR)d1 $% + &Z + " # &5 + y + 0 & ' ,! " x 0 " ."4 202 , 202 $ !,' # yˆ 12(S-VAR)1(VAR)d2 $% + &Z + " # &5 + x + 0 & ' ,! " y 0 " ."4 202 , 202 $ !,' # ) ' (^ { = = & ' C & ' 8 ) % = = & %% ) ( VAR) a 12(S-VAR)1(VAR)ee1 + " a ! " 202 12(S-VAR)1(VAR)ee2 b + & ' . 3.
12(S-VAR)2(MINMAX)2 maxX + " *0! "! x ! " *+ + " 12(S-VAR)2(MINMAX)e1 minY + *0! "! y ! " *+ + " 12(S-VAR)2(MINMAX)e2 maxY + " *0! "! y ! " *+ + " $ $ ) !8 ' (^ { = = & ' C & ' 8 = = & ) $ ) !8 Σyi – b.Σxi a= n n.Σx y – Σxi.Σyi b = . i 2i n Σxi – (Σxi)2 + " ! " 202 a & ' . 3. 202 b n.Σxiyi – Σxi.Σyi {n.Σxi2 – (Σxi)2}{n.Σyi2 – (Σyi)2} y–a m= b n = a + bx r= & ' . 3.
) $ ) !8 + 0 & ' , m1 – b + b2 – 4c(a – y) m1 = 2c + 0 & ' , m2 – b – b2 – 4c(a – y) m2 = 2c + 0 & ' , n n = a + bx + cx 2 = = & %% (; ) + " ! " 202 a & ' . 3. 202 b & ' . 3. 3 r $ ) !8 Σyi – b.Σlnxi a= n n.Σ(lnxi)yi – Σlnxi .Σyi b= n.Σ(lnxi)2 – (Σlnxi)2 r= n.Σ(lnxi)yi – Σlnxi.Σyi {n.Σ(lnxi)2 – (Σlnxi)2}{n.
= = & %% " ) ab ) + " ! " 202 a & ' . 3. 202 b $ ) !8 Σlnyi – lnb.Σxi n ( ) n.Σx lny – Σx .Σlny b = exp( ) n.Σx – (Σx ) a = exp i i i 2 i i i 2 n.Σxilnyi – Σxi.Σlnyi {n.Σxi2 – (Σxi)2}{n.Σ(lnyi)2 – (Σlnyi)2} & ' . 3. 3 r r= + 0 & ' , m m= + 0 & ' , n n = abx lny – lna lnb = = & %% & ) ) + " ! " 202 a & ' . 3. 202 b & ' . 3. 3 r $ ) !8 . a = exp Σlnyi – b Σlnxi ( n ) n.
) $ ) !8 r= & ' . 3. 3 r + " Sxx = Σ(xi–1)2 – (Σxi–1)2 n Sxy Sxx.Syy Syy = Σyi2– (Σyi) n ) Sxy = Σ(xi–1)yi – b m= + 0 & ' , n n=a+ y–a b x ) !8( = $ ! + & #1 0" # ! " 1 .0 4 + "; " 0 1 202 1 ' & ' . 3. 3 .04 202 %." ! "! 2 202 1 ' & ' . 3. 3 .04 202 1 . : ! "! 3 & ' , + # 350 " 0 0 " .
& ' . 3. 202 b: 12(S-VAR)1(VAR)ee2(b)E 1887575758 12(S-VAR)1(VAR)ee3(r)E 0904793561 & ' . 3. 3: 2 = = & %% (; 202 1 . : : 12(S-VAR)3(TYPE)2(Log) x1= 20 + " ! " 202 a: A12(S-VAR)1(VAR)ee1(a)E –4209356544 12(S-VAR)1(VAR)ee2(b)E 2425756228 12(S-VAR)1(VAR)ee3(r)E 0991493123 & ' . 3. 202 b: & ' . 3. 3: 3 ' 8 ) + ,! " & ' . 3. 3 202 1 .
$ ! & ) !8 I $ ! & : " !] &5 ] "1 ' , 12 + 12 Al(BIN)1+1E 1+ 1 10 b 1 0" !] (d: ] . , H: ] . , b: ] ", o: ] 1&0) • &Z + +2 " 4 $ .0 Syntax ERROR • $ 0 BASE + * &Z + (< + (] . ) 1 ' + ! " ! + "0 ! ! " 4*0 ( . ! "- ,4'2 0 .#" $ ! & H ' ) !8 I % $% + & # $ + ! ' 4 &5 + ! " !] .
1E M(HEX) k H LOGIC $ 0 BASE X & " &5 1 0" LOGIC LOGIC & ' 0 4 0 + 2$% d 1 ' e & ' + " 4 + "; k '%* & I ) % C & d9 ' + 2 ' * !] 1 + " &4 !] .
^ ! $ ' %% #3 #"1 (xnor) $ - 3 &5 + . 3! " %." '1 '0 . $ ! & : 11112 xnor 1012 = 11111101012 1111X(LOGIC)3(xnor)101E 1111110101 b 1111110101 b 1111010011 b 9 " $3/ (Not) $ + ( - - '0 .
1. 0 ,g(PRGM) ! + 0 PRGM ED I T RUN DEL 1 2 3 2. 0 b(EDIT) # & 1 ! & 1 1 (P1 2:" P4) EDI T Pr o g r am P-1234 380 ! 0 + 4 & 1 3. 0 ! " ! # & 1 " + 0 $% " • 4 # 0 " 4'& D!:# $% e 1 ' d & ' + " 4 1 1 ' 4 2 MODE : COMP CMPLX 1 MODE : BASE SD REG 2 3 45 4 1 4 2 4.
0 C (" " & 1. 0 ,g(PRGM)b(EDIT) 1 0" 4 EDIT Program 2. $% ! b 2:" e # & 1 : & 1 + " 1 ! 3. $% e 1 ' d &) $ & 1 1 '0 . " 1 !! ! " & 1 . . ! $ + • 0 f ! & " ! " & 1 c ! & " 4. "4 1 ! & 1 41 0 A !5(EXIT) k C + 2$% " & 1 0 $ 0 PRGM 4 0 C C PRGM 1. 0 5 2.
3. $% ! b 2:" e # & 1 ! " & 1 + " • [ <, +2 04 !! " # & 1 : & 1 + ." &4' & 1 ' !1 0" # + " + 4 & 1 DELETE Pr o g r am 4' . !:# P-1234 390 k H ) H ) 9 M2 C 1. ' + " 4 1 ! & 1 & D + 4 0 !d (P-CMD) • 4 # 1 ! " "4'& D!:# 2. $% e 1 ' d -+ + "; 1 '1 0" & ' 0 " + " 3.
^ ( ) (39*() , {%*0 "} ^ {%*0 "} \" % *0 " ! " & 1 % !,' 1 1 0"- ! " " $ !,' # [ <, Q & D!:# ' + " & 1 *0 " % !,'0 " # + " ? → A : A2 ^ Ans2 ) C &0 " 0 g Goto ~ Lbl , Goto n : .... : Lbl n Lbl n : .... : Goto n (n = 4 #"1 + 0 2:" 9) \" % " ! " Goto n ! & " Lbl n 0 " + " ? → A : Lbl 1 : ? → B : A × B ÷ 2 ^ Goto 1 ) :! .
) C !% * / ) If g " If $% * " ! " & 1 0 $ 0 " . 4 " If ( :" &5 " !$ ) + &5 4 ." &5 4 ! '! ) % ) If • If "$% + Then $% If 0 + Then 3 4' $ .0 Syntax ERROR • . 4 , " Goto " Break 2$% $ { . 4 *} " Then 1 ' Else If~Then (~Else) ~IfEnd , If { . 4 " !} : Then { . 4 *} : Else { . 4 *} : IfEnd : {%*0 "} : ... \" % • .
For~To~Step~Next , For { . 4 ( + . )} → { 1& ( 1& * )} To { . 4 ( + .# *0)} Step { . 4 (! # )} : {%*0 "} : ... {%*0 "} : Next : .... \" % " %*0 " #"1 + For 2:" Next 1 # 0 1& * 4' . + #" ' + 4 ! # $ 1 + ' " 1 ' . 4 + . 0 4 ' *! " 1 " # " 1 0 For~To~Next + " For 1 → A To 10 Step 0.
) !& * Deg, Rad, Gra , .. : Deg : .. .. : Rad : .. .. : Gra : .. " !,(SETUP)b(Deg) !,(SETUP)c(Rad) !,(SETUP)d(Gra) \" % " #$% ' * #" + + * (COMP, CMPLX, SD, REG) ) %% Fix (COMP, CMPLX, SD, REG) , .. : Fix {n} : .. (n = 4 #"1 + 0 2:" 9) " !,(SETUP)eb(Fix)a 2:" j \" % " #$% 04 4*0 ( .
) % ClrMemory , .. : ClrMemory : .. " !j(CLR)b(Mem) \" % " # + 1& #" 0$ &5 ( (COMP, CMPLX, BASE) & $* + 1& " $ $% 0 → { 1& } ClrStat , " \" % (SD, REG) .. : ClrStat : .. !j(CLR)b(Stat) " #$% ! *+ + " " 2. . #" 0 : +$ + 4 $ !,' # ) " &! % !& ! ) ' M+, M– , " \" % (COMP, CMPLX, BASE) .. : { . 4 } M+ : .. / .. : { . 4 } M– : ..
) H ( = $ DT , .. : { . .. : { . .. : { . .. : { . (SD, REG) 4 ( + x)} ; { . 4 ( + Freq)} DT : .. ............................. 0 SD, FreqOn 4 ( + x)} DT : .. ............................. 0 SD, FreqOff 4 ( + x)} , { . 4 ( + y)} ; { . 4 ( + Freq)} DT : .. ......................... 0 REG, FreqOn 4 ( + x)} , { . 4 ( + y)} DT : .. .........................
: k ) % ! ) : ) !8 " .
• 0 " 1 0"$ + "0 + " , " ,2 ' +$ 0 [ " + ,1 ' & D " 1 ÷ 2π = 21π = 0.159154943 1 ÷ 2 × π = 12 π = 1.570796327 k ! ) !8, ) ! $ ! ' ! (" & $ " + & #1 0"%+ "! " , (%+ "! " + &Z 1 '- 3), 4 ! $% , ) $ ", 1 ' " "$ , %+ "! " , ,) $ " " " –99 ±1×10 2:" ±9.
1K 3 ' x x2 1/x 3 ' x x! nPr nCr Pol(x, y) Rec(r, θ) °’ ” ^(xy) x' y a b/c ! H 0 < x < 1×10100 | x | < 1×1050 | x | < 1×10100 ; x G 0 | x | < 1×10100 0 < x < 69 (x &5 4 ) 0 < n < 1×1010, 0 < r < n (n, r &5 4 ) 1 < {n!/(n–r)!} < 1×10100 0 < n < 1×1010, 0 < r < n (n, r &5 4 ) 1 < n!/r! < 1×10100 1 < n!/(n–r)! < 1×10100 | x |, | y | < 9.999999999×1099 x2+y2 < 9.999999999×1099 0 < r < 9.
! 9 + 2 4 ! 1 0"! -.0 0 0 0 0 3. ! " + " # + + 4' &5 ! -.0 01 $0 • 0 d e 1 0" 4 1 !! " . 4 , + &Z ! & + 4' .0! -.0 0 0 + 1 +" .0! -.0 0 0 ' 04 “ 1 +"! "! -.0 0” 10 • 0 A . 4 , + &Z ! & + 4' .0! -.0 0 & 0 + . 4 , &5 *$ .0! -.0 04' +$ & ' .
9 Time Out $* 0 ,& . 3 * 3 *0 " 0 " + 4 .# " ! .# *0 ,& . 3 * 3: " . + tol & 0 + .
1. 0 1A(OFF) &@0 " .0 ! • $ 1 +$4 + + 4' + &@0 " .0 ! 0 " .[!,' & 1 $ 1 + " .0 ! & "0 ! " " .0 ! 2. 2 0³ ) & ' 1 ' & 1 0 ! # (+) 1 '! # (–) Screw $ 2 " 3. & ³ 4. . " " .0 !: O19(CLR)3(All)w(Yes) • + ! ! # 0 ! \ $C $ " .0 !! " + 4'&@0 " 0 . + $% " $0; . + 10 .0 , 0 " + 0 p &@0 " .
Manufacturer: CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan Responsible within the European Union: CASIO EUROPE GmbH Casio-Platz 1 22848 Norderstedt, Germany This mark applies in EU countries only.
CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan SA1304-A Printed in China © 2013 CASIO COMPUTER CO., LTD.