fx-100AU User's Guide E http://world.casio.
Removing and Replacing the Calculator’s Cover • Before starting .....1 Holding the cover as shown in the illustration, slide the unit out of the cover. • After you are finished .....2 Holding the cover as shown in the illustration, slide the unit out of the cover. • Always slide the keyboard end of the unit into the cover first. Never slide the display end of the unit into the cover. .....1 .....
Safety Precautions Be sure to read the following safety precautions before using this calculator. Keep this manual handy for later reference. Caution This symbol is used to indicate information that can result in personal injury or material damage if ignored. Batteries • After removing the battery from the calculator, put it in a safe place where it will not get into the hands of small children and accidentally swallowed. • Keep batteries out of the reach of small children.
• The displays and illustrations (such as key markings) shown in this User’s Guide are for illustrative purposes only, and may differ somewhat from the actual items they represent. • The contents of this manual are subject to change without notice. • In no event shall CASIO Computer Co., Ltd. be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials. Moreover, CASIO Computer Co., Ltd.
• Avoid use and storage in areas subjected to large amounts of humidity and dust. Take care never to leave the calculator where it might be splashed by water or exposed to large amounts of humidity or dust. Such conditions can damage internal circuitry. • Never drop the calculator or otherwise subject it to strong impact. • Never twist or bend the calculator. Avoid carrying the calculator in the pocket of your trousers or other tight-fitting clothing where it might be subjected to twisting or bending.
Contents Removing and Replacing the Calculator’s Cover .................................. 1 Safety Precautions .................................. 2 Handling Precautions ............................. 3 Two-line Display ...................................... 7 Before getting started... .......................... 7 kModes .................................................................... 7 kInput Capacity ........................................................ 8 kMaking Corrections During Input ............
kSquare Roots, Cube Roots, Roots, Squares, Cubes, Reciprocals, Factorials, Random Numbers, π, and Permutation/Combination ......................... 19 kAngle Unit Conversion ......................................... 20 kCoordinate Conversion (Pol (x, y), Rec (r, )) ..... 20 kEngineering Notation Calculations ....................... 21 kInputting Engineering Symbols ............................ 21 Statistical Calculations ......................... 23 Standard Deviation ....................................
Two-line Display The two-line display makes it possible to view both the calculation formula and its result at the same time. • The upper line shows the calculation formula. • The lower line shows the result. A separator symbol is displayed every three digits when the integer part of the mantissa has more than three digits. Before getting started... k Modes Before starting a calculation, you must first enter the correct mode as indicated in the table below.
• In this manual, the name of the mode you need to enter in order to perform the calculations being described is indicated in the main title of each section. Example: Complex Number Calculations CMPLX Note! • To return the calculation mode and setup to the initial defaults shown below, press A B 2(Mode) =.
• Pressing the g key recalls the last result obtained, which you can use in a subsequent calculation. See “Answer Memory” for more information about using the g key. k Making Corrections During Input • Use e and r to move the cursor to the location you want. • Press [ to delete the number or function at the current cursor position. • Press A K to change to an insert cursor t. Inputting something while the insert cursor is on the display inserts the input at the insert cursor position.
• Example: To add 2 + 3 and then multiply the result by 4 2+3p\g-4= = 2+ 3 Ans×4 5. Disp 20. k Exponential Display Formats This calculator can display up to 10 digits. Larger values are automatically displayed using exponential notation. In the case of decimal values, you can select between two formats that determine at what point exponential notation is used.
• To change the decimal point and separator symbol setting, press the F key a number of times until you reach the setup screen shown below. Disp 1 • Display the selection screen. 1rr • Press the number key ( 1 or 2) that corresponds to the setting you want to use.
k Fraction Operations uFraction Calculations • Values are displayed in decimal format automatically whenever the total number of digits of a fractional value (integer + numerator + denominator + separator marks) exceeds 10. 13 2 1 • Example 1: 15 3 5 2C3+1C5= 13 15.00 1 2 11 • Example 2: 3 1 4 4 3 12 3C1C4+ 1C2C3= 4 11 12.00 2 1 2C4= 4 2 1 • Example 4: 1.6 2.1 1 C 2 + 1.6 = 2 • Results of calculations that mix fraction and decimal values are always decimal.
uMixed Fraction ↔ Improper Fraction Conversion • Example: 1 2 5 ↔ 3 3 1C2C3= 1 2 3.00 AB 5 3.00 AB 1 2 3.00 • You can use the display setup (Disp) screen to specify the display format when a fraction calculation result is greater than one. • To change the fraction display format, press the q key a number of times until you reach the setup screen shown below. Disp 1 • Display the selection screen. 1r • Press the number key ( 1 or 2) that corresponds to the setting you want to use.
• Example 5 : To discount the sum of 168, 98, and 734 by 20% (800) 168 + 98 + 734 = g A j 1 p 1 - 20 A v , * * As shown here, if you want to use the current Answer Memory value in a mark up or discount calculation, you need to assign the Answer Memory value into a variable and then use the variable in the mark up/discount calculation. This is because the calculation performed when v is pressed stores a result to Answer Memory before the , key is pressed.
k FIX, SCI, RND • To change the settings for the number of decimal places, the number of significant digits, or the exponential display format, press the F key a number of times until you reach the setup screen shown below. F i x Sc i No r m 1 2 3 • Press the number key ( 1, 2, or 3) that corresponds to the setup item you want to change.
Memory Calculations COMP Use the F key to enter the COMP Mode when you want to perform a calculation using memory. COMP ............................................................. F 1 k Answer Memory • Whenever you press = after inputting values or an expression, the calculated result automatically updates Answer Memory contents by storing the result.
• Example: 23 + 9 A j 3 (M+) 23 9 32 53 6 47 53 , 6 | ) 45 2 90 45 - 2 A { –11 0 3 (M+) (Total) k Variables • There are nine variables (A through F, M, X and Y), which can be used to store data, constants, results, and other values. • Use the following operation to delete data assigned to a particular variable: 0 A j 1. This operation deletes the data assigned to variable A. • Perform the following key operation when you want to clear the values assigned to all of the variables.
k Trigonometric/Inverse Trigonometric Functions • To change the default angle unit (degrees, radians, grads), press the F key a number of times until you reach the angle unit setup screen shown below. Deg Rad G r a 1 2 3 • Press the number key ( 1, 2, or 3 ) that corresponds to the angle unit you want to use. (90° = π radians = 100 grads) 2 • Example 1: sin 63°52 41 0.897859012 q ..... 1(Deg) S 63 I 52 I 41 I = • Example 2: cos ( π rad 0.5 3 ) q .....
k Common and Natural Logarithms/ Antilogarithms • Example 1: log 1.23 0.089905111 R 1.23 = • Example 2: In 90 (= loge 90) = 4.49980967 T 90 = TpP= ln e 1 • Example 3: e10 22026.46579 A U 10 = • Example 4: 101.5 31.6227766 A Q 1.5 = • Example 5: 2 3 0.125 2WD3= RD2TW4= • Example 6: ( 2)4 16 • Negative values inside of calculations must be enclosed within parentheses. For details, see “Order of Operations.
• Example 8: To generate a random number between 0.000 and 0.999 AM= 0.66400 (The above value is a sample only. Results differ each time.) • Example 9: 3π 9.424777961 3Ax= • Example 10: To determine how many different 4-digit values can be produced using the numbers 1 through 7 • Numbers cannot be duplicated within the same 4-digit value (1234 is allowed, but 1123 is not).
• Example 1: To convert polar coordinates (r 2, 60°) to rectangular coordinates (x, y) (Deg) x 1 A F 2 P 60 T = 0o y 1.732050808 • Press 0 n to display the value of x, or 0 o to display the value of y. • Example 2: To convert rectangular coordinates (1, 3) to polar coordinates (r,) (Rad) r 2 f1P L3T= 0o θ 1.047197551 • Press 0 n to display the value of r, or 0 o to display the value of . k Engineering Notation Calculations • Example 1: To convert 56,088 meters to kilometers → 56.
1(Eng ON): Engineering symbols on (indicated by “Eng” on the display) 2(Eng OFF): Engineering symbols off (no “Eng” indicator) • The following are the nine symbols that can be used when engineering symbols are turned on.
Statistical Calculations SD REG Standard Deviation SD Use the F key to enter the SD Mode when you want to perform statistical calculations using standard deviation. SD ............................................................. F F 1 • In the SD Mode and REG Mode, the | key operates as the S key. • Always start data input with A B 1 (Scl) = to clear statistical memory. • Input data using the key sequence shown below.
Population Standard Deviation (σn) = 1.316956719 Arithmetic Mean (o) = 53.375 Number of Data (n) = 8 Sum of Values (Σx) = 427 Sum of Squares of Values (Σx 2 ) = 22805 AX2= AX1= AU3= AU2= AU1= Data Input Precautions • S S inputs the same data twice. • You can also input multiple entries of the same data using A G. To input the data 110 ten times, for example, press 110 A G 10 S. • You can perform the above key operations in any order, and not necessarily that shown above.
Press 2 to exit data input without registering the value you just input. Press 1 if you want to register the value you just input, without saving it in memory. If you do this, however, you will not be able to display or edit any of the data you have input. • To delete data you have just input, press A U. • After inputting statistical data in the SD Mode or REG Mode, you will be unable to display or edit individual data items any longer after perform either the following operations.
Regression Calculations REG Use the F key to enter the REG Mode when you want to perform statistical calculations using regression. REG .......................................................... F F 2 • In the SD Mode and REG Mode, the | key operates as the S key. • Entering the REG Mode displays screens like the ones shown below. L i n Log Ex p 1 2 3 r Pw r 1 e I nv Quad 2 3 • Press the number key ( 1, 2, or 3) that corresponds to the type of regression you want to use.
To recall this type of value: Σx2 Σx n Σy2 Σy Σxy o xσn xσn-1 p yσn yσn-1 Perform this key operation: AU1 AU2 AU3 AUr1 AUr2 AUr3 AX1 AX2 AX3 AXr1 AXr2 AXr3 AXrr1 AXrr2 Regression coefficient A Regression coefficient B Regression calculation other than quadratic regression Correlation coefficient r m n AXrr3 AXrrr1 AXrrr2 • The following table shows the key operations you should use to recall results in the case of quadratic regression.
u Linear Regression • The regression formula for linear regression is: y = A + Bx . • Example: Atmospheric Pressure vs. Temperature Temperature Atmospheric Pressure 10°C 15°C 20°C 25°C 30°C 1003 hPa 1005 hPa 1010 hPa 1011 hPa 1014 hPa Perform linear regression to determine the regression formula terms and correlation coefficient for the data nearby. Next, use the regression formula to estimate atmospheric pressure at –5°C and temperature at 1000 hPa.
EAUr3, AU3-AX1AXr1F\ EAU3,1F= Sample Covariance = 35 u Logarithmic, Exponential, Power, and Inverse Regression • Use the same key operations as linear regression to recall results for these types of regression. • The following shows the regression formulas for each type of regression.
n when xi is 16 = –13.38291067 m1 when yi is 20 = 47.14556728 m2 when yi is 20 = 175.5872105 16 A X r r r 3 = 20 A X r r r 1 = 20 A X r r r 2 = Data Input Precautions • S S inputs the same data twice. • You can also input multiple entries of the same data using A G. To input the data “20 and 30” five times, for example, press 20 P 30 A G 5 S. • The above results can be obtained in any order, and not necessarily that shown above.
• You can use the replay function in the CMPLX Mode. Since complex numbers are stored in replay memory in the CMPLX Mode, however, more memory than normal is used up. • Example: (2 3 i) (4 5 i) 6 8 i (Real part 6) 2+3i+4+5i= (Imaginary part 8 i) Ar k Absolute Value and Argument Calculation Supposing the imaginary number expressed by the rectangular form z = a + bi is represented as a point in the Gaussian plane, you can determine the absolute value (r) and argument ( ) of the complex number.
A r to toggle the display between the absolute value (r) and argument ( ). • Example: 1 i ↔ 1.414213562 ⬔ 45 1+iAY=Ar L 2 A Q 45 A Z = A r (Angle unit: Deg) • You select rectangular form (a+bi) or polar form (r⬔ ) for display of complex number calculation results. F... 1(Disp) r 1(a+bi):Rectangular form 2(r⬔ ): Polar form (indicated by “r⬔ ” on the display) k Conjugate of a Complex Number For any complex number z where z = a+bi, its conjugate (z) is z = a – bi.
automatically cuts off the decimal part. • Negative binary, octal, and hexadecimal values are produced by taking the two’s complement. • You can use the following logical operators between values in Base-n calculations: and (logical product), or (logical sum), xor (exclusive or), xnor (exclusive nor), Not (bitwise complement), and Neg (negation). • The following are the allowable ranges for each of the available number systems.
• Example 4: To convert the value 2210 to its binary, octal, and hexadecimal equivalents. (10110 , 26 , 16 ) 2 8 16 tb 0. b l l l 1(d) 22 = 10110. b o 26. o 16. H Binary mode: Octal mode: h Hexadecimal mode: • Example 5: To convert the value 51310 to its binary equivalent. tb 0. l l l 1(d) 513 = Ma t h ERROR Binary mode: b b • You may not be able to convert a value from a number system whose calculation range is greater than the calculation range of the resulting number system.
k Error Messages The calculator is locked up while an error message is on the display. Press t to clear the error, or press e or r to display the calculation and correct the problem. See “Error Locator” for details. Math ERROR • Causes • Calculation result is outside the allowable calculation range. • An attempt to perform a function calculation using a value that exceeds the allowable input range. • An attempt to perform an illogical operation (division by zero, etc.
Arg ERROR • Cause • Improper use of an argument • Action • Press e or r to display the location of the cause of the error and make required corrections. k Order of Operations Calculations are performed in the following order of precedence. 1 Coordinate transformation: Pol (x, y), Rec (r, θ ) Normal distribution: P(, Q(, R( 2 Type A functions: With these functions, the value is entered and then the function key is pressed.
• Operations of the same precedence are performed from right to left. exIn 120 → ex{In( 120)} • Other operations are performed from left to right. • Operations enclosed in parentheses are performed first. • When a calculation contains an argument that is a negative number, the negative number must be enclosed within parentheses. The negative sign (–) is treated as a Type B function, so particular care is required when the calculation includes a high-priority Type A function, or power or root operations.
• Calculations are performed in sequence according to “Order of Operations.” Commands and values are deleted from the stack as the calculation is performed. k Input Ranges Internal digits: 12 Accuracy*: As a rule, accuracy is ±1 at the 10th digit. Functions sinx Input Range DEG 0 x 4.499999999 1010 RAD 0 x 785398163.3 GRA 0 x 4.999999999 1010 cosx DEG 0 x 4.500000008 1010 RAD 0 x 785398164.9 GRA 0 x 5.000000009 1010 tanx DEG Same as sinx, except when x = (2n-1) 90.
Functions x! Input Range 0 x 69 (x is an integer) 0 n 1 1010, 0 r n (n, r are integers) 1 {n!/(n–r)!} 1 10100 0 n 1 1010, 0 r n (n, r are integers) nCr 1 [n!/{r!(n–r)!}] 1 10100 49 Pol(x, y) x , y 9.999999999 10 (x2+y2) 9.999999999 1099 nPr 99 Rec(r, ) 0 r 9.
internal consecutive calculations that are performed in the case of ^(xy), x y , x!, 3 , nPr, nCr, etc.) In the vicinity of a function’s singular point and point of inflection, errors are cumulative and may become large. Power Supply This calculator is powered by a single AA-size battery. Replacing the Battery Dim figures on the display of the calculator indicate that battery power is low. Continued use of the calculator when the battery is low can result in improper operation.
Specifications Power Supply: Single AA-size battery (R6P (SUM-3)) Battery Life: Approximately 17,000 hours continuous display of flashing cursor. Approximately 2 years when left with power turned off. Dimensions: 20.0 (H) 78 (W) 155 (D) mm 13/16 (H) 31/16 (W) 61/8 (D) Weight: 133 g (4.7 oz) including battery Power Consumption: 0.
CASIO COMPUTER CO., LTD.