User manual - File 2
u 236 u
18-6. 検定
Z検定は、標準化に基づいてさまざまな検定を行ないます。過去の調査などから母集
団(たとえば「国の全人口」など)の標準偏差がわかっている場合、標本が母集団を正
しく表わしているかどうか検定することができます。繰り返し実施 され る市場調査、
世論調査などで利用します。
1標本の Z 検定は、母標準偏差がわかっている場合に、母集団の平均(母平均)に関す
る仮説を検定します。
2標本の Z 検定は、母標準偏差がわかっている場合に、2つの母集団の母平均を比較
します。
1 比率の Z 検定は、基準を満たしているデータが一定の比率に達しているかどうか
を検定します。
2 比率の Z 検定は、2つの母集団に対して、基準を満たしているデータの比率を比較
します。
t 検定は、標本の大きさや得られたデータを使って、標本がある母集団から取り出さ
れたものであるという仮説を検定します。実証したい仮説とは逆の仮説を、帰無仮
説といいます。一方、これを否定したものを対立仮説と呼びます。t 検定は、帰無仮説
を検定するのが普通です。そして、帰無仮説と対立仮説のどちらを採用するかを決
定します。
標本が一定の傾向を表わしているときに、標本数や分散の大きさに基づいて、その
傾向がどの程度確かなもの(母集団にも適用できるもの)かを検定します。逆に、確
からしさを高めるためにどの程度の標本数が必要か計算するときにも、この検定に
関係する式を利用します。母集団の標準偏差がわかっていなくても利用できるの
で、1回限りの調査にも役立ちます。
1標本の t 検定は、母標準偏差がわかっていない場合に、母平均に関する仮説を検定し
ます。
2標本の t 検定は、2つの母集団の母標準偏差がわかっていない場合に、それぞれの
母集団の母平均を比較します。
1次回帰 t 検定は、2組のデータの線形の関係の強さを計算します。
これら以外にも、標本と母集団の関係を調べる機能がいくつか用意されています。
カイ2乗(χ
2
)検定は、いくつかの独立したグループを用意しておき、各グループに含
まれる標本の比率に関する仮説を検定します。主に、2つの質的な変数(はいといいえ、
など)を組み合わせてクロス集計表を作成して、それらの変数の独立性について評
価します。たとえば、交通事故の有無と、交通法規に関する意識に関係があるかどう
かを評価します。
2標本のF検定は、標本の結果が複数の要因によって構成されているときに、 ある要
因を取り除いても母集団の結果は変化しないという仮説を検定します。たとえば、
たばこ、飲酒、ビタミンの不足、コーヒーの大量摂取、運動不足、不規則な生活など複
数の原因が考えられるとき、それらの要因が発ガンに影響を及ぼしているかどうか
を検定します。
ANOVAは、複数の標本があるとき、各標本の母集団の平均が等しいという仮説を検
定します。たとえば、製品の材料組成比を何通りか用意したときに、それらが最終製
品の品質や寿命に影響を及ぼすかどうかを検定します。
GY-355/357/359ch18後-1k1026n 04.11.18, 14:03236