fx Series Calculator Manual
E-25
  To determine the greatest common divisor of 28 and 35
    S*(GCD) 28 1)(,) 35 )= 
7
  To determine the least common multiple of 9 and 15
    S/(LCM) 9 1)(,) 15 )= 
45
  To extract the integer part of −3.5
     S+(Int)- 3.5 )= 
−3
  To determine the largest integer that does not exceed −3.5
     S-(Intg)- 3.5 )= 
−4
Complex Number Calculations (CMPLX) 
To perform complex number calculations, first press N2(CMPLX) to 
enter the CMPLX Mode. You can use either rectangular coordinates (
a+bi) 
or polar coordinates (
r∠) to input complex numbers. Complex number 
calculation results are displayed in accordance with the complex number 
format setting on the setup menu. 
  (2 + 6
i) ÷ (2i) = 3 – i (Complex number format: a + bi)
  ( 2 + 6 W(
i))/( 2 W(i))=  3–i
 2 ∠ 45 = 
'
2
 + 
'
2
i Bv (Complex number format: a + bi)
      2 1-(∠) 45 = 
'
2
+
'
2
i
'
2
 + 
'
2
i = 2 ∠ 45 Bv (Complex number format: r∠)
     ! 2 e+! 2 eW(
i)=  2∠45
Note: • If you are planning to perform input and display of the calculation 
result in polar coordinate format, specify the angle unit before starting the 
calculation. • The 
 value of the calculation result is displayed in the range 
of –180°  
  180°. • Display of the calculation result while Linear Display 
is selected will show 
a and bi (or r and ) on separate lines.
CMPLX Mode Calculation Examples
 (1 – i)
–1
 = 
1
2
1
2
+ 
i
 B (Complex number format: a + bi)
     ( 1 -W(
i))E= 
1
2
1
2
+
i
 (1 + i)
2
 + (1 – i)
2
 = 0 B 
  ( 1 +W(
i))w+( 1 -W(i))w=  0
  To obtain the conjugate complex number of 2 + 3i (Complex number 
format: a + bi)
  12(CMPLX)2(Conjg) 2 + 3 W(
i))=  2–3i
  To obtain the absolute value and argument of 1 + i  Bv
 Absolute Value:  1w(Abs) 1 +W(
i)= 
'
2
 Argument: 12(CMPLX)1(arg)1+W(i))=  45
1919
2020
2121










