Technical data
Table Of Contents
- Preface
- Introduction
- Chapter 1. Advanced Topics
- Chapter 2. Planning For Router Configuration
- Important Terminology
- Collect your Configuration Information
- PPP Link Protocol (over ATM or Frame Relay)
- IP Routing Network Protocol
- IPX Routing Network Protocol
- Bridging Network Protocol
- RFC 1483 / RFC 1490 Link Protocols
- IP Routing Network Protocol
- IPX Routing Network Protocol
- Bridging Network Protocol
- MAC Encapsulated Routing: RFC 1483MER / RFC 1490MER Link Protocols
- IP Routing Network Protocol
- FRF8 Link Protocol
- IP Routing Network Protocol
- Dual Ethernet Router Configuration
- General Information
- Configuring the Dual Ethernet Router as a Bridge
- Configuring the Dual Ethernet Router for IP Routing
- Chapter 3. Configuring Router Software
- Configuration Tables
- Configuring PPP with IP Routing
- Configuring PPP with IPX Routing
- Configuring PPP with Bridging
- Configuring RFC 1483 / RFC 1490 with IP Routing
- Configuring RFC 1483 / RFC 1490 with IPX Routing
- Configuring RFC 1483 / RFC 1490 with Bridging
- Configuring MAC Encapsulated Routing: RFC 1483MER / RFC 1490MER with IP Routing
- Configuring FRF8 with IP Routing
- Configuring Mixed Network Protocols
- Configuring a Dual Ethernet Router for IP Routing
- Verify the Router Configuration
- Sample Configurations
- Sample Configuration 1 — PPP with IP and IPX
- Scenario
- Sample Configuration 1 — Diagram for Target Router (SOHO)
- Sample Configuration 1 — Tables For Target Router (SOHO)
- Sample Configuration 1 - Check the Configuration with the “list” Commands
- Information About Names And Passwords
- Sample Configuration 2 — RFC 1483 with IP and Bridging
- Scenario
- Sample Configuration 2 — Diagram for Target Router SOHO
- Sample Configuration 2 — Tables For Target Router (SOHO)
- Sample Configuration 2 - Check the Configuration with the “list” Commands
- Sample Configuration 3 — Configuring a Dual Ethernet Router for IP Routing
- Scenario
- Configuration Tables
- Chapter 4. Configuring Special Features
- Bridging Filtering and IP Firewall
- IP (RIP) Protocol Controls
- DHCP (Dynamic Host Configuration Protocol)
- General Information
- Manipulating Subnetworks and Explicit Client Leases
- Enabling/disabling a subnetwork or a client lease
- Adding subnetworks and client leases
- Setting the lease time
- Manually changing client leases
- Setting Option Values
- Concepts
- Commands for global option values
- Commands for specific option values for a subnetwork
- Commands for specific option values for a client lease
- Commands for listing and checking option values
- BootP
- About BootP and DHCP
- Enable/Disable BootP
- Use BootP to specify the boot server
- Defining Option Types
- Concepts
- Commands
- Configuring BootP/DHCP Relays
- Other Information
- NAT (Network Address Translation)
- Management Security
- Software Options Keys
- Encryption
- IP Filtering
- L2TP Tunneling - Virtual Dial-Up
- Introduction
- L2TP Concepts
- LNS, L2TP Client, LAC, and Dial User
- L2TP Client Example
- LNS and L2TP Client Relationship
- Tunnels
- Sessions
- Configuration
- Preliminary Steps to Configure a Tunnel
- Verification Steps
- Configuration Commands
- PPP Session Configuration
- Sample Configurations
- Simple L2TP Client Configuration Example
- Complete LNS and L2TP Client Configuration Example
- Configuration Process
- Chapter 5. Command Line Interface Reference
- Command Line Interface Conventions
- System Level Commands
- Router Configuration Commands
- Target Router System Configuration Commands (SYSTEM)
- Target Router Ethernet LAN Bridging and Routing (ETH)
- Remote Router Access Configuration (REMOTE)
- Asymmetric Digital Subscriber Line Commands (ADSL)
- Asynchronous Transfer Mode Commands (ATM)
- Dual Ethernet Router Commands (ETH)
- General information
- High-Speed Digital Subscriber Line Commands (HDSL)
- General information about HDSL
- ISDN Digital Subscriber Line (IDSL)
- General information about IDSL
- Symmetric Digital Subscriber Line Commands (SDSL)
- General information about SDSL
- Dynamic Host Configuration Protocol Commands (DHCP)
- L2TP — Virtual Dial-Up Configuration (L2TP)
- Bridging Filtering Commands (FILTER BR)
- Save Configuration Commands (SAVE)
- Erase Configuration Commands (ERASE)
- File System Commands
- Chapter 6. Managing the Router
- Simple Network Management Protocol (SNMP)
- TELNET Remote Access
- Client TFTP Facility
- TFTP Server
- BootP Server
- Boot Code
- Manual Boot Menu
- Access Manual Boot Mode
- Option 1: Retry Start-up
- Option 2: Boot from FLASH Memory
- Option 3: Boot from Network
- Option 4: Boot from Specific File
- Option 5: Configure Boot System
- Option 6: Set Time and Date
- Option 7: Set Console Baud Rate
- Option 8: Start Extended Diagnostics
- Identifying Fatal Boot Failures
- Software Kernel Upgrades
- Backup and Restore Configuration Files
- FLASH Memory Recovery Procedures
- Recovering Passwords and IP Addresses
- Batch File Command Execution
- Chapter 7. Troubleshooting
- Appendix A. Network Information Worksheets
- Configuring PPP with IP Routing
- Configuring PPP with IPX Routing
- Configuring PPP with Bridging
- Configuring RFC 1483 / RFC 1490 with IP Routing
- Configuring RFC 1483 / RFC 1490 with IPX Routing
- Configuring RFC 1483 / RFC 1490 with Bridging
- Configuring RFC 1483MER / RFC 1490MER with IP Routing
- Configuring FRF8 with IP Routing
- Configuring a Dual Ethernet Router for IP Routing
- Appendix B. Configuring IPX Routing
- Index

72
Chapter 4. Configuring Special Features
The features described in this chapter are advanced topics. They are primarily intended for experienced users and
network administrators to perform network management and more complex configurations.
• IP Firewall and Bridging Filtering
• IP (RIP) Protocol Controls
• DHCP (Dynamic Host Configuration Protocol)
• NAT (Network Address Translation)
• Management Security
• Software Options Keys
• Encryption
• IP filtering
• L2TP tunneling
Bridging Filtering and IP Firewall
General Information
You can control the flow of packets across the router using bridging filtering. Bridging filtering lets you ‘deny’ or
‘allow’ packets to cross the network based on position and hexadecimal content within the packet. This enables
you to restrict or forward messages with a specified address, protocol or data content. Common uses are to prevent
access to remote networks, control unauthorized access to the local network and limit unnecessary traffic.
For example, it might be necessary to restrict remote access for specific users on the local network. In this case,
bridging filters are defined using the local MAC address for each user to be restricted. Each bridging filter is
specified as a ‘deny’ filter based on the MAC address and position of the address within the packet. Deny filtering
mode is then enabled to initiate bridge filtering. Every packet with one of the MAC addresses would not be
bridged across the router until “deny” filtering mode was disabled.
Similarly, protocol filtering can be used to prevent a specific protocol from being bridged. In this case, the
protocol id field in a packet is used to deny or allow a packet. You can also restrict, for example, the bridging of
specific broadcast packets.
Configure Bridging Filtering
Bridging filtering allows you to control the packets transferred across the router. This feature can be used to
enhance security or improve performance. Filtering occurs based on matched patterns within the packet at a
specified offset. Two filtering modes are available:
• “Deny” mode will discard any packet matched to the “deny” filters in the filter database and let all other
packets pass.










