Technical data
Table Of Contents
- Preface
- Introduction
- Chapter 1. Advanced Topics
- Chapter 2. Planning For Router Configuration
- Important Terminology
- Collect your Configuration Information
- PPP Link Protocol (over ATM or Frame Relay)
- IP Routing Network Protocol
- IPX Routing Network Protocol
- Bridging Network Protocol
- RFC 1483 / RFC 1490 Link Protocols
- IP Routing Network Protocol
- IPX Routing Network Protocol
- Bridging Network Protocol
- MAC Encapsulated Routing: RFC 1483MER / RFC 1490MER Link Protocols
- IP Routing Network Protocol
- FRF8 Link Protocol
- IP Routing Network Protocol
- Dual Ethernet Router Configuration
- General Information
- Configuring the Dual Ethernet Router as a Bridge
- Configuring the Dual Ethernet Router for IP Routing
- Chapter 3. Configuring Router Software
- Configuration Tables
- Configuring PPP with IP Routing
- Configuring PPP with IPX Routing
- Configuring PPP with Bridging
- Configuring RFC 1483 / RFC 1490 with IP Routing
- Configuring RFC 1483 / RFC 1490 with IPX Routing
- Configuring RFC 1483 / RFC 1490 with Bridging
- Configuring MAC Encapsulated Routing: RFC 1483MER / RFC 1490MER with IP Routing
- Configuring FRF8 with IP Routing
- Configuring Mixed Network Protocols
- Configuring a Dual Ethernet Router for IP Routing
- Verify the Router Configuration
- Sample Configurations
- Sample Configuration 1 — PPP with IP and IPX
- Scenario
- Sample Configuration 1 — Diagram for Target Router (SOHO)
- Sample Configuration 1 — Tables For Target Router (SOHO)
- Sample Configuration 1 - Check the Configuration with the “list” Commands
- Information About Names And Passwords
- Sample Configuration 2 — RFC 1483 with IP and Bridging
- Scenario
- Sample Configuration 2 — Diagram for Target Router SOHO
- Sample Configuration 2 — Tables For Target Router (SOHO)
- Sample Configuration 2 - Check the Configuration with the “list” Commands
- Sample Configuration 3 — Configuring a Dual Ethernet Router for IP Routing
- Scenario
- Configuration Tables
- Chapter 4. Configuring Special Features
- Bridging Filtering and IP Firewall
- IP (RIP) Protocol Controls
- DHCP (Dynamic Host Configuration Protocol)
- General Information
- Manipulating Subnetworks and Explicit Client Leases
- Enabling/disabling a subnetwork or a client lease
- Adding subnetworks and client leases
- Setting the lease time
- Manually changing client leases
- Setting Option Values
- Concepts
- Commands for global option values
- Commands for specific option values for a subnetwork
- Commands for specific option values for a client lease
- Commands for listing and checking option values
- BootP
- About BootP and DHCP
- Enable/Disable BootP
- Use BootP to specify the boot server
- Defining Option Types
- Concepts
- Commands
- Configuring BootP/DHCP Relays
- Other Information
- NAT (Network Address Translation)
- Management Security
- Software Options Keys
- Encryption
- IP Filtering
- L2TP Tunneling - Virtual Dial-Up
- Introduction
- L2TP Concepts
- LNS, L2TP Client, LAC, and Dial User
- L2TP Client Example
- LNS and L2TP Client Relationship
- Tunnels
- Sessions
- Configuration
- Preliminary Steps to Configure a Tunnel
- Verification Steps
- Configuration Commands
- PPP Session Configuration
- Sample Configurations
- Simple L2TP Client Configuration Example
- Complete LNS and L2TP Client Configuration Example
- Configuration Process
- Chapter 5. Command Line Interface Reference
- Command Line Interface Conventions
- System Level Commands
- Router Configuration Commands
- Target Router System Configuration Commands (SYSTEM)
- Target Router Ethernet LAN Bridging and Routing (ETH)
- Remote Router Access Configuration (REMOTE)
- Asymmetric Digital Subscriber Line Commands (ADSL)
- Asynchronous Transfer Mode Commands (ATM)
- Dual Ethernet Router Commands (ETH)
- General information
- High-Speed Digital Subscriber Line Commands (HDSL)
- General information about HDSL
- ISDN Digital Subscriber Line (IDSL)
- General information about IDSL
- Symmetric Digital Subscriber Line Commands (SDSL)
- General information about SDSL
- Dynamic Host Configuration Protocol Commands (DHCP)
- L2TP — Virtual Dial-Up Configuration (L2TP)
- Bridging Filtering Commands (FILTER BR)
- Save Configuration Commands (SAVE)
- Erase Configuration Commands (ERASE)
- File System Commands
- Chapter 6. Managing the Router
- Simple Network Management Protocol (SNMP)
- TELNET Remote Access
- Client TFTP Facility
- TFTP Server
- BootP Server
- Boot Code
- Manual Boot Menu
- Access Manual Boot Mode
- Option 1: Retry Start-up
- Option 2: Boot from FLASH Memory
- Option 3: Boot from Network
- Option 4: Boot from Specific File
- Option 5: Configure Boot System
- Option 6: Set Time and Date
- Option 7: Set Console Baud Rate
- Option 8: Start Extended Diagnostics
- Identifying Fatal Boot Failures
- Software Kernel Upgrades
- Backup and Restore Configuration Files
- FLASH Memory Recovery Procedures
- Recovering Passwords and IP Addresses
- Batch File Command Execution
- Chapter 7. Troubleshooting
- Appendix A. Network Information Worksheets
- Configuring PPP with IP Routing
- Configuring PPP with IPX Routing
- Configuring PPP with Bridging
- Configuring RFC 1483 / RFC 1490 with IP Routing
- Configuring RFC 1483 / RFC 1490 with IPX Routing
- Configuring RFC 1483 / RFC 1490 with Bridging
- Configuring RFC 1483MER / RFC 1490MER with IP Routing
- Configuring FRF8 with IP Routing
- Configuring a Dual Ethernet Router for IP Routing
- Appendix B. Configuring IPX Routing
- Index

215
Note:
It is strongly suggested that you use the Configuration Manager’s
Upgrade/Backup
tool to upgrade or
backup the kernel. The Configuration Manager’s tool is more convenient to use than the Command Line Interface.
Upgrade Instructions
Read the following steps very carefully
!
1.
WARNING:
Before performing this procedure, make sure that you can successfully boot from the
network using the manual boot procedure option 3 or 4. Refer to the section
Option 3: Boot from
Network
.
2. Copy the router software file KERNEL.F2K to a directory where it can be accessed by a TFTP server.
The TFTP server must
be on the same LAN as the target router; i.e., there must
not be a router or
gateway between the target system and the TFTP server. If the TFTP sever is not on the same network as
the target router, enter the gateway in the boot menu as described in the previous section.
3. Log into the Command Line Interface.
4. Enter
reboot
using the Command Line Interface to synchronize the file system and reboot the router.
Since the kernel is no longer stored in FLASH memory, the router will try to boot from the network. If
you have never set permanent boot parameters, the router attempts to locate a BOOTP or RARP server. If
the router successfully reboots from the server, go to step 7.
5. Select
4
to boot router software from the TFTP server using temporary network boot parameters. You are
prompted for: the router’s boot LAN IP address, the TFTP server’s IP address, the load address and the
filename of the router’s kernel saved on the server. Note that the LAN IP address is the address to be
used during the network boot and this may differ from the IP address ultimately assigned to the router.
Enter the temporary network boot parameters (hit the
return
key
for the load address). If all entered
information is valid, the router will boot from the network. An example follows:
Alternatively, select
5
to set
permanent network boot parameters and then boot from the network with
selection
3
. You would use this option if you wish to boot from the network for a period of time before
copying the software to FLASH memory.
6. After the boot is complete, verify that the kernel is running successfully.
7. When you are satisfied that the new kernel is performing as expected, copy the kernel into FLASH
memory in the router typing the following commands:
copy tftp@xxx.xxx.xxx.xxx:sfilename kernel.f2k
sync
where
xxx.xxx.xxx.xxx
is the TFTP server IP address, SFILENAME is the server filename of the kernel
and KERNEL.F2K
is the name of the file loaded from FLASH memory by the boot procedure. If you do
Enter selection: 4
Enter my IP address:
128.1.210.65
Enter server IP address:
128.1.210.70
Enter load address [80100]:
Enter file name: kernel.f2k










