Technical data
Table Of Contents
- Preface
- Introduction
- Chapter 1. Advanced Topics
- Chapter 2. Planning For Router Configuration
- Important Terminology
- Collect your Configuration Information
- PPP Link Protocol (over ATM or Frame Relay)
- IP Routing Network Protocol
- IPX Routing Network Protocol
- Bridging Network Protocol
- RFC 1483 / RFC 1490 Link Protocols
- IP Routing Network Protocol
- IPX Routing Network Protocol
- Bridging Network Protocol
- MAC Encapsulated Routing: RFC 1483MER / RFC 1490MER Link Protocols
- IP Routing Network Protocol
- FRF8 Link Protocol
- IP Routing Network Protocol
- Dual Ethernet Router Configuration
- General Information
- Configuring the Dual Ethernet Router as a Bridge
- Configuring the Dual Ethernet Router for IP Routing
- Chapter 3. Configuring Router Software
- Configuration Tables
- Configuring PPP with IP Routing
- Configuring PPP with IPX Routing
- Configuring PPP with Bridging
- Configuring RFC 1483 / RFC 1490 with IP Routing
- Configuring RFC 1483 / RFC 1490 with IPX Routing
- Configuring RFC 1483 / RFC 1490 with Bridging
- Configuring MAC Encapsulated Routing: RFC 1483MER / RFC 1490MER with IP Routing
- Configuring FRF8 with IP Routing
- Configuring Mixed Network Protocols
- Configuring a Dual Ethernet Router for IP Routing
- Verify the Router Configuration
- Sample Configurations
- Sample Configuration 1 — PPP with IP and IPX
- Scenario
- Sample Configuration 1 — Diagram for Target Router (SOHO)
- Sample Configuration 1 — Tables For Target Router (SOHO)
- Sample Configuration 1 - Check the Configuration with the “list” Commands
- Information About Names And Passwords
- Sample Configuration 2 — RFC 1483 with IP and Bridging
- Scenario
- Sample Configuration 2 — Diagram for Target Router SOHO
- Sample Configuration 2 — Tables For Target Router (SOHO)
- Sample Configuration 2 - Check the Configuration with the “list” Commands
- Sample Configuration 3 — Configuring a Dual Ethernet Router for IP Routing
- Scenario
- Configuration Tables
- Chapter 4. Configuring Special Features
- Bridging Filtering and IP Firewall
- IP (RIP) Protocol Controls
- DHCP (Dynamic Host Configuration Protocol)
- General Information
- Manipulating Subnetworks and Explicit Client Leases
- Enabling/disabling a subnetwork or a client lease
- Adding subnetworks and client leases
- Setting the lease time
- Manually changing client leases
- Setting Option Values
- Concepts
- Commands for global option values
- Commands for specific option values for a subnetwork
- Commands for specific option values for a client lease
- Commands for listing and checking option values
- BootP
- About BootP and DHCP
- Enable/Disable BootP
- Use BootP to specify the boot server
- Defining Option Types
- Concepts
- Commands
- Configuring BootP/DHCP Relays
- Other Information
- NAT (Network Address Translation)
- Management Security
- Software Options Keys
- Encryption
- IP Filtering
- L2TP Tunneling - Virtual Dial-Up
- Introduction
- L2TP Concepts
- LNS, L2TP Client, LAC, and Dial User
- L2TP Client Example
- LNS and L2TP Client Relationship
- Tunnels
- Sessions
- Configuration
- Preliminary Steps to Configure a Tunnel
- Verification Steps
- Configuration Commands
- PPP Session Configuration
- Sample Configurations
- Simple L2TP Client Configuration Example
- Complete LNS and L2TP Client Configuration Example
- Configuration Process
- Chapter 5. Command Line Interface Reference
- Command Line Interface Conventions
- System Level Commands
- Router Configuration Commands
- Target Router System Configuration Commands (SYSTEM)
- Target Router Ethernet LAN Bridging and Routing (ETH)
- Remote Router Access Configuration (REMOTE)
- Asymmetric Digital Subscriber Line Commands (ADSL)
- Asynchronous Transfer Mode Commands (ATM)
- Dual Ethernet Router Commands (ETH)
- General information
- High-Speed Digital Subscriber Line Commands (HDSL)
- General information about HDSL
- ISDN Digital Subscriber Line (IDSL)
- General information about IDSL
- Symmetric Digital Subscriber Line Commands (SDSL)
- General information about SDSL
- Dynamic Host Configuration Protocol Commands (DHCP)
- L2TP — Virtual Dial-Up Configuration (L2TP)
- Bridging Filtering Commands (FILTER BR)
- Save Configuration Commands (SAVE)
- Erase Configuration Commands (ERASE)
- File System Commands
- Chapter 6. Managing the Router
- Simple Network Management Protocol (SNMP)
- TELNET Remote Access
- Client TFTP Facility
- TFTP Server
- BootP Server
- Boot Code
- Manual Boot Menu
- Access Manual Boot Mode
- Option 1: Retry Start-up
- Option 2: Boot from FLASH Memory
- Option 3: Boot from Network
- Option 4: Boot from Specific File
- Option 5: Configure Boot System
- Option 6: Set Time and Date
- Option 7: Set Console Baud Rate
- Option 8: Start Extended Diagnostics
- Identifying Fatal Boot Failures
- Software Kernel Upgrades
- Backup and Restore Configuration Files
- FLASH Memory Recovery Procedures
- Recovering Passwords and IP Addresses
- Batch File Command Execution
- Chapter 7. Troubleshooting
- Appendix A. Network Information Worksheets
- Configuring PPP with IP Routing
- Configuring PPP with IPX Routing
- Configuring PPP with Bridging
- Configuring RFC 1483 / RFC 1490 with IP Routing
- Configuring RFC 1483 / RFC 1490 with IPX Routing
- Configuring RFC 1483 / RFC 1490 with Bridging
- Configuring RFC 1483MER / RFC 1490MER with IP Routing
- Configuring FRF8 with IP Routing
- Configuring a Dual Ethernet Router for IP Routing
- Appendix B. Configuring IPX Routing
- Index

211
To Return to Automatic Boot Mode
1. When you are ready to return to automatic boot mode, set switch 6
UP
2. Reboot by selecting
1
,
2
,
3,
or
4
. Rebooting with switch 6 in the
UP
position will cause the router to boot
router software automatically in the order and manner you have specified.
Option 1: Retry Start-up
When in Manual Boot mode, you can reboot the router in the boot procedure order by selecting option
1
,
“Retry start-up”.
The boot procedure order is either one you have specified or the default order. The
default order is to boot from FLASH memory and then the network (if defined). If you wish to boot from the
network and/or alter the boot procedure order, refer to
Option 3: Boot from Network
.
Option 2: Boot from FLASH Memory
If you wish to perform a manual boot from FLASH memory, select
2
from the main boot procedure menu.
The router will attempt to boot from FLASH memory. If unsuccessful, the router will return to manual boot
mode. (When you first receive the router, the router defaults to booting from FLASH during power-up or
automatic reboot.)
Option 3: Boot from Network
First, you have to define permanent network boot parameters using selection
5
. Then, select
3
from the main
boot procedure menu to perform a manual boot from the network. The router will attempt to boot from the
network using the permanent network boot parameters you have specified.
If you have not defined network boot parameters, the router attempts to locate a BOOTP or RARP server on
the network.
BOOTP can be used to supply an IP address, a TFTP Server IP address, and a filename.
RARP is used to obtain an IP address, given the MAC address. The router assumes that the RARP server is
also capable of performing the duties of a TFTP Server and will request the filename
KERNEL.F2K
or the
filename assigned when setting permanent network boot parameters.)
If a BOOTP or RARP server exists and is properly configured with the router’s MAC address, the router will
boot from the network. If unsuccessful, the router will return to manual boot mode.
Option 4: Boot from Specific File
You can temporarily override permanent network boot parameters when performing a network boot. When
the router is in Manual Boot mode, select option
4
, “
boot from specific file”
, from the main boot procedure
menu. Set the network boot parameters; the current default (permanent) parameters are as shown. After
setting the parameters, hit the
return
key
and the router will boot from the network using the temporary boot
parameters. If unsuccessful, the router will return to manual boot mode.
Once you have installed router software on a network TFTP server, you can have the router boot across the LAN.
Network booting requires three parameters:
• the boot IP address










