Administrator's Guide Supporting RSA Data Protection Manager (DPM) Environments (Supporting Fabric OS v7.2.0) Owner's manual
Table Of Contents
- Contents
- About This Document
- Encryption Overview
- In this chapter
- Host and LUN considerations
- Terminology
- The Brocade Encryption Switch
- The FS8-18 blade
- FIPS mode
- Performance licensing
- Recommendation for connectivity
- Usage limitations
- Brocade encryption solution overview
- Data encryption key life cycle management
- Master key management
- Support for virtual fabrics
- Cisco Fabric Connectivity support
- Configuring Encryption Using the Management Application
- In this chapter
- Encryption Center features
- Encryption user privileges
- Smart card usage
- Using authentication cards with a card reader
- Registering authentication cards from a card reader
- Registering authentication cards from the database
- Deregistering an authentication card
- Setting a quorum for authentication cards
- Using system cards
- Enabling or disabling the system card requirement
- Registering systems card from a card reader
- Deregistering system cards
- Using smart cards
- Tracking smart cards
- Editing smart cards
- Network connections
- Blade processor links
- Encryption node initialization and certificate generation
- Steps for connecting to a DPM appliance
- Exporting the KAC certificate signing request (CSR)
- Submitting the CSR to a certificate authority
- KAC certificate registration expiry
- Importing the signed KAC certificate
- Uploading the CA certificate onto the DPM appliance (and first-time configurations)
- Uploading the KAC certificate onto the DPM appliance (manual identity enrollment)
- DPM key vault high availability deployment
- Loading the CA certificate onto the encryption group leader
- Encryption preparation
- Creating an encryption group
- Adding a switch to an encryption group
- Replacing an encryption engine in an encryption group
- High availability clusters
- Configuring encryption storage targets
- Configuring hosts for encryption targets
- Adding target disk LUNs for encryption
- Adding target tape LUNs for encryption
- Moving targets
- Tape LUN write early and read ahead
- Tape LUN statistics
- Encryption engine rebalancing
- Master keys
- Security settings
- Zeroizing an encryption engine
- Using the Encryption Targets dialog box
- Redirection zones
- Disk device decommissioning
- Rekeying all disk LUNs manually
- Thin provisioned LUNs
- Viewing time left for auto rekey
- Viewing and editing switch encryption properties
- Viewing and editing encryption group properties
- Encryption-related acronyms in log messages
- Configuring Encryption Using the CLI
- In this chapter
- Overview
- Command validation checks
- Command RBAC permissions and AD types
- Cryptocfg Help command output
- Management LAN configuration
- Configuring cluster links
- Setting encryption node initialization
- Steps for connecting to a DPM appliance
- Initializing the Fabric OS encryption engines
- Exporting the KAC certificate signing request (CSR)
- Submitting the CSR to a CA
- Importing the signed KAC certificate
- Uploading the CA certificate onto the DPM appliance (and first-time configurations)
- Uploading the KAC certificate onto the DPM apliance (manual identity enrollment)
- Creating a Brocade encryption group
- Client registration for manual enrollment
- DPM key vault high availability deployment
- Setting heartbeat signaling values
- Adding a member node to an encryption group
- Generating and backing up the master key
- High availability clusters
- Re-exporting a master key
- Enabling the encryption engine
- Zoning considerations
- CryptoTarget container configuration
- Crypto LUN configuration
- Impact of tape LUN configuration changes
- Decommissioning LUNs
- Decommissioning replicated LUNs
- Force-enabling a decommissioned disk LUN for encryption
- Force-enabling a disabled disk LUN for encryption
- SRDF LUNs
- Using SRDF, TimeFinder and RecoverPoint with encryption
- Configuring LUNs for SRDF/TF or RP deployments
- SRDF/TF/RP manual rekeying procedures
- Tape pool configuration
- Configuring a multi-path Crypto LUN
- First-time encryption
- Thin provisioned LUNs
- Data rekeying
- Deployment Scenarios
- In this chapter
- Single encryption switch, two paths from host to target
- Single fabric deployment - HA cluster
- Single fabric deployment - DEK cluster
- Dual fabric deployment - HA and DEK cluster
- Multiple paths, one DEK cluster, and two HA clusters
- Multiple paths, DEK cluster, no HA cluster
- Deployment in Fibre Channel routed fabrics
- Deployment as part of an edge fabric
- Deployment with FCIP extension switches
- Data mirroring deployment
- VMware ESX server deployments
- Best Practices and Special Topics
- In this chapter
- Firmware upgrade and downgrade considerations
- Configuration upload and download considerations
- Configuration upload at an encryption group leader node
- Configuration upload at an encryption group member node
- Information not included in an upload
- Steps before configuration download
- Configuration download at the encryption group leader
- Configuration download at an encryption group member
- Steps after configuration download
- HP-UX considerations
- AIX considerations
- Enabling a disabled LUN
- Decommissioning in an EG containing mixed modes
- Decommissioning a multi-path LUN
- Disk metadata
- Tape metadata
- Tape data compression
- Tape pools
- Tape block zero handling
- Tape key expiry
- Configuring CryptoTarget containers and LUNs
- Redirection zones
- Deployment with Admin Domains (AD)
- Do not use DHCP for IP interfaces
- Ensure uniform licensing in HA clusters
- Tape library media changer considerations
- Turn off host-based encryption
- Avoid double encryption
- PID failover
- Turn off compression on extension switches
- Rekeying best practices and policies
- KAC certificate registration expiry
- Changing IP addresses in encryption groups
- Disabling the encryption engine
- Recommendations for Initiator Fan-Ins
- Best practices for host clusters in an encryption environment
- HA Cluster deployment considerations and best practices
- Key vault best practices
- Tape device LUN mapping
- Maintenance and Troubleshooting
- In this chapter
- Encryption group and HA cluster maintenance
- Displaying encryption group configuration or status information
- Removing a member node from an encryption group
- Deleting an encryption group
- Removing an HA cluster member
- Displaying the HA cluster configuration
- Replacing an HA cluster member
- Deleting an HA cluster member
- Performing a manual failback of an encryption engine
- Encryption group merge and split use cases
- A member node failed and is replaced
- A member node reboots and comes back up
- A member node lost connection to the group leader
- A member node lost connection to all other nodes in the encryption group
- Several member nodes split off from an encryption group
- Adjusting heartbeat signaling values
- EG split possibilities requiring manual recovery
- Configuration impact of encryption group split or node isolation
- Encryption group database manual operations
- Key vault diagnostics
- Measuring encryption performance
- General encryption troubleshooting
- Troubleshooting examples using the CLI
- Management application encryption wizard troubleshooting
- LUN policy troubleshooting
- Loss of encryption group leader after power outage
- MPIO and internal LUN states
- FS8-18 blade removal and replacement
- Brocade Encryption Switch removal and replacement
- Deregistering a DPM key vault
- Reclaiming the WWN base of a failed Brocade Encryption Switch
- Removing stale rekey information for a LUN
- Downgrading firmware from Fabric OS 7.1.0
- Fabric OS and DPM Compatibility Matrix
- Splitting an encryption group into two encryption groups
- Moving an encryption blade from one EG to another in the same fabric
- Moving an encryption switch from one EG to another in the same fabric
- State and Status Information
- Index

Fabric OS Encryption Administrator’s Guide (DPM) 153
53-1002922-01
Re-exporting a master key
3
Re-exporting a master key
With the introduction of Fabric OS v7.0.0, you can export master keys to the key vault multiple
times instead of only once. The ability to export the master key more than once enables you to
recover the master key when needed. For example, prior to Fabric OS 7.0.0, if you forgot your
passphrase that was used to export the master key, you were not able to recover the master key
from the key vault. The ability to re-export the master key in this scenario alleviates this concern.
When the master key is exported to the key vault for the first time, it is stored with the actual
master key ID. Subsequent exports are provided with additional exported key IDs that are
generated by the Brocade Encryption Switch. Each additional time the master key is exported to the
key vault, a different key ID is saved.
The master key can be recovered from any export using the exported master key ID and the
corresponding passphrase.
Note the following:
• If you are upgrading to Fabric OS v7.0.0 from an earlier version, (for example, Fabric OS v6.4.x),
you can recover the master key with the master key ID. Additional exports of the master key are
allowed with the exported master key IDs.
• If you are downgrading from Fabric OS v7.0.0 to an earlier version (for example, Fabric OS
v6.4.x), you can recover the master key using the master key ID that is exported in Fabric OS
v7.0.0 and its corresponding passphrase. Downgrading to earlier versions allows the master
key to be recoverable with only the master key ID.
The
--show -localEE command shows the actual master key IDs, along with the new master key
IDs. Also shown are all exported master key IDs associated with a given (actual) master key.
NOTE
You will need to remember the exported master key ID and passphrase you used while exporting the
master key ID.
A new subcommand is available to support exporting master key IDs for a given master key.
SecurityAdmin:switch> cryptocfg --show -mkexported_keyids <MK ID>
The following example lists the exported master key IDs for a given master key ID:
SecurityAdmin:switch> cryptocfg --show –mkexported_keyids
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:92
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:92
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:93
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:94
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:95
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:96
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:97
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:98
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:99
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:9a
e3:ae:aa:89:ec:12:0c:04:29:61:9c:99:44:a3:9b:9b
Operation succeeded.