Technical data
Table Of Contents
- E60 M5
- System overview
- Foreword
- Purpose of this Participant's Manual
- Introduction
- S85B50
- Basic engine and add-on parts
- Upper section of crankcase
- Bedplate
- Crankcase
- Cylinder head
- Crankshaft/main bearings
- Connecting rods
- Pistons
- Camshaft
- Valve springs
- Valve cotters
- Box-type tappets
- Valves
- VANOS High pressure pump
- VANOS Actuators
- VANOS gear mechanism
- VANOS Pressure accumulator
- Oil pumps
- Electric oil pumps
- Oil spray nozzles
- Oil filter housing
- Exhaust manifold
- Intake air manifold
- Intake silencers
- Radiator
- Thermostat
- Objectives
- Purpose of this Participant's Manual
- Introduction
- Functional Principle of the Digital Motor Electronics
- Digital Motor Electronics (DME)
- DME control unit Siemens MS_S65
- Hot-film air mass meter (HFM)
- Fuel pressure sensor
- Electric fuel pump (EKP)
- EKP module
- Ionic current control unit
- Crankshaft sensor
- Camshaft sensor
- Oil condition sensor (QLT)
- Oil pressure switch
- Oil extraction pump
- Idle speed actuator (LLS)
- Throttle valve actuator motor
- Throttle valve sensor (DKG)
- Secondary air pump
- Mini HFM for secondary air system
- Primary oxygen sensor (control sensor)
- Secondary oxygen sensor (monitor sensor)
- Exhaust gas temperature sensor
- Pressure accumulator shut-off valve (VANOS)
- Service information
- Objectives
- Purpose of this Participant's Manual
- New 7-speed SMG
- The new SMG3
- Special functions
- Transmission ratio of the SMG3
- Gearshift pattern
- Signals and parameters
- Hydraulic system
- Initialization
- Purpose of this Participant's Manual
- MK60E5 from Continental Teves
- Further development of the MK60psi
- DSC Additional Functions
- Differences compared to the MK60psi
- Purpose of this Participant's Manual
- Additional Functions
- Differences compared to the E60
- Displays and indicators in the E60 M5

12
7
Ionic current representation
The ionic current progression (curve) is
directly dependent on the cylinder pressure
and the ions in the cylinder.
Generally applicable:
Poor combustion => low cylinder pressure
Good combustion => high cylinder pressure
Free ions additionally split off or separate due
to pressure peaks that occur in the
combustion chamber during knocking
combustion. This results in a change in the
ionic current progression (curve).
The ionic current is measured and evaluated in
the ionic current control unit.
The resulting corrections to the engine control
are executed in the engine control unit.
6 - Pressure curve (top) and ionic current (bottom)
Index Explanation
1 Ionic current maximum by induction
of ignition coil
2 Ionic current maximum due to
ignition (flame front directly in area
of spark plugs)
3 The ionic current progression is a
function of the pressure curve










