User Manual
Table Of Contents
- 1. General
- 1.1 System Description
- 1.2 Indications and Usage
- 1.3 Contraindications
- 1.4 Warnings and Precautions
- 1.4.1 Sterilization, Storage, and Handling
- 1.4.2 Device Implantation and Programming
- 1.4.3 Lead Evaluation and Connection
- 1.4.4 Follow-up Testing
- 1.4.5 Pulse Generator Explant and Disposal
- 1.4.6 Hospital and Medical Hazards
- 1.4.7 Home and Occupational Hazards
- 1.4.8 Cellular Phones
- 1.4.9 Electronic Article Surveillance (EAS)
- 1.4.10 Home Appliances
- 1.4.11 Home Monitoring®
- 1.5 Potential/Observed Effects of the Device on Health
- 1.6 Clinical Studies
- 1.6.1 Kronos LVT Study
- 1.6.2 Tupos LV/ATx Study
- 1.6.2.1 Study Overview
- 1.6.2.2 Methods
- 1.6.2.3 Summary of Clinical Results
- 1.6.2.4 Primary Endpoint 1: Six Minute Walk Test & QOL (Effectiveness)
- 1.6.2.5 Effectiveness Endpoint Analysis and Conclusions
- 1.6.2.6 Primary Endpoint 2: Complication-Free Rate (Safety)
- 1.6.2.7 Primary Safety Enpoint Analysis and Conclusions
- 1.6.2.8 Post-hoc Safety Analysis
- 1.6.2.9 Post hoc Safety Analysis Conclusion
- 1.6.2.10 Secondary Endpoint Results
- 1.6.2.11 Multi-site Poolability and Gender Analysis
- 1.6.2.12 Conclusions
- 1.6.3 Lumax HFT VV Clinical Study
- 1.6.4 TRUST Clinical Study
- 1.6.5 Deikos A+
- 1.7 Patient Selection and Treatment
- 1.8 Patient Counseling Information
- 1.9 Evaluating Prospective CRTD/ICD Patients
- 2. Device Features
- 2.1 SafeSync Telemetry
- 2.2 Cardiac Resynchronization Therapy (CRT)
- 2.3 Sensing (Automatic Sensitivity Control)
- 2.4 Automatic Threshold Measurement (ATM)
- 2.5 Ventricular Tachyarrhythmia Detection
- 2.6 Tachyarrhythmia Redetection
- 2.7 Tachyarrhythmia Termination
- 2.8 Tachyarrhythmia Therapy
- 2.9 Bradycardia Therapy
- 2.9.1 Bradycardia Pacing Modes
- 2.9.2 Basic Rate
- 2.9.3 Night Rate
- 2.9.4 Rate Hysteresis
- 2.9.5 Dynamic AV Delay
- 2.9.6 IOPT
- 2.9.7 Upper Tracking Rate
- 2.9.8 Mode Switching
- 2.9.9 PMT Management
- 2.9.10 VES Discrimination after Atrial Sensed Events
- 2.9.11 Rate-Adaptive Pacing
- 2.9.12 Pulse Amplitude
- 2.9.13 Pulse Width
- 2.9.14 Post Ventricular Atrial Refractory Period
- 2.9.15 PVARP after VES
- 2.9.16 Auto PVARP
- 2.9.17 Noise Response
- 2.9.18 Post Shock Pacing
- 2.10 EP Test Functions
- 2.11 Special Features
- 2.10.2.3 Transmitting Data
- 2.11.3.3 Types of Report Transmissions
- 2.11.3.4 Description of Transmitted Data
- 2.11.3.5 IEGM Online HDs
- 2.11.3.6 Scheduling Remote Follow-up
- 2.11.4 Real-time IEGM Transmission
- 2.11.5 Capacitor Reforming
- 2.11.6 Patient and Implant Data
- 2.11.7 System Status
- 2.11.8 HF Monitor Statistics
- 2.11.9 Holter Memory
- 2.11.10 Timing Statistics
- 2.11.11 Atrial Arrhythmias
- 2.11.12 Ventricular Arrhythmias
- 2.11.13 Sensor
- 2.11.14 Sensing
- 2.11.15 Impedances
- 2.11.16 Automatic Threshold
- 2.11.17 Asynchronous Pacing Modes
- 2.11.18 Far-Field IEGM for Threshold Testing (Leadless ECG)
- 2.11.19 Advanced AT/AF Diagnostics (Lumax 700/740 only)
- 2.11.20 Atrial NIPS (Lumax 700/740 & 600/640 only)
- 3. Sterilization and Storage
- 4. Implant Procedure
- 5. Follow-up Procedures
- 6. Technical Specifications
160 Lumax Technical Manual
CAUTION
Connector Compatibility - ICD/CRT-D and lead system
compatibility should be confirmed prior to the implant
procedure. Consult your BIOTRONIK representative
regarding lead/pulse generator compatibility prior to the
implantation of an ICD/CRT-D system. For further
information, please refer to Appendix A
.
Setscrew Adjustment – Back-off the setscrew(s) prior to
insertion of lead connector(s) as failure to do so may result in
damage to the lead(s), and/or difficulty connecting lead(s).
Cross Threading Setscrew(s) – To prevent cross threading
the setscrew(s), do not back the setscrew(s) completely out
of the threaded hole. Leave the torque wrench in the slot of
the setscrew(s) while the lead is inserted.
Tightening Setscrew(s) – Do not overtighten the
setscrew(s). Use only the BIOTRONIK supplied torque
wrench.
Sealing System – Be sure to properly insert the torque
wrench into the perforation at an angle perpendicular to the
connector receptacle. Failure to do so may result in damage
to the plug and its self-sealing properties.
Far-Field Sensing of signals from the atrium in the
ventricular channel or ventricular signals in the atrial channel
should be avoided by appropriate lead placement,
programming of pacing/sensing parameters, and maximum
sensitivity settings. If it is necessary to modify the Far Field
Blanking parameter, the parameter should be lengthened
only long enough to eliminate far-field sensing as evidenced
on the IEGMs. Extending the parameter unnecessarily may
cause undersensing of actual atrial or ventricular events.
Refer to the following steps when connecting the leads to the
device.