User Manual
Table Of Contents
- 1. General
- 1.1 System Description
- 1.2 Indications and Usage
- 1.3 Contraindications
- 1.4 Warnings and Precautions
- 1.4.1 Sterilization, Storage, and Handling
- 1.4.2 Device Implantation and Programming
- 1.4.3 Lead Evaluation and Connection
- 1.4.4 Follow-up Testing
- 1.4.5 Pulse Generator Explant and Disposal
- 1.4.6 Hospital and Medical Hazards
- 1.4.7 Home and Occupational Hazards
- 1.4.8 Cellular Phones
- 1.4.9 Electronic Article Surveillance (EAS)
- 1.4.10 Home Appliances
- 1.4.11 Home Monitoring®
- 1.5 Potential/Observed Effects of the Device on Health
- 1.6 Clinical Studies
- 1.6.1 Kronos LVT Study
- 1.6.2 Tupos LV/ATx Study
- 1.6.2.1 Study Overview
- 1.6.2.2 Methods
- 1.6.2.3 Summary of Clinical Results
- 1.6.2.4 Primary Endpoint 1: Six Minute Walk Test & QOL (Effectiveness)
- 1.6.2.5 Effectiveness Endpoint Analysis and Conclusions
- 1.6.2.6 Primary Endpoint 2: Complication-Free Rate (Safety)
- 1.6.2.7 Primary Safety Enpoint Analysis and Conclusions
- 1.6.2.8 Post-hoc Safety Analysis
- 1.6.2.9 Post hoc Safety Analysis Conclusion
- 1.6.2.10 Secondary Endpoint Results
- 1.6.2.11 Multi-site Poolability and Gender Analysis
- 1.6.2.12 Conclusions
- 1.6.3 Lumax HFT VV Clinical Study
- 1.6.4 TRUST Clinical Study
- 1.6.5 Deikos A+
- 1.7 Patient Selection and Treatment
- 1.8 Patient Counseling Information
- 1.9 Evaluating Prospective CRTD/ICD Patients
- 2. Device Features
- 2.1 SafeSync Telemetry
- 2.2 Cardiac Resynchronization Therapy (CRT)
- 2.3 Sensing (Automatic Sensitivity Control)
- 2.4 Automatic Threshold Measurement (ATM)
- 2.5 Ventricular Tachyarrhythmia Detection
- 2.6 Tachyarrhythmia Redetection
- 2.7 Tachyarrhythmia Termination
- 2.8 Tachyarrhythmia Therapy
- 2.9 Bradycardia Therapy
- 2.9.1 Bradycardia Pacing Modes
- 2.9.2 Basic Rate
- 2.9.3 Night Rate
- 2.9.4 Rate Hysteresis
- 2.9.5 Dynamic AV Delay
- 2.9.6 IOPT
- 2.9.7 Upper Tracking Rate
- 2.9.8 Mode Switching
- 2.9.9 PMT Management
- 2.9.10 VES Discrimination after Atrial Sensed Events
- 2.9.11 Rate-Adaptive Pacing
- 2.9.12 Pulse Amplitude
- 2.9.13 Pulse Width
- 2.9.14 Post Ventricular Atrial Refractory Period
- 2.9.15 PVARP after VES
- 2.9.16 Auto PVARP
- 2.9.17 Noise Response
- 2.9.18 Post Shock Pacing
- 2.10 EP Test Functions
- 2.11 Special Features
- 2.10.2.3 Transmitting Data
- 2.11.3.3 Types of Report Transmissions
- 2.11.3.4 Description of Transmitted Data
- 2.11.3.5 IEGM Online HDs
- 2.11.3.6 Scheduling Remote Follow-up
- 2.11.4 Real-time IEGM Transmission
- 2.11.5 Capacitor Reforming
- 2.11.6 Patient and Implant Data
- 2.11.7 System Status
- 2.11.8 HF Monitor Statistics
- 2.11.9 Holter Memory
- 2.11.10 Timing Statistics
- 2.11.11 Atrial Arrhythmias
- 2.11.12 Ventricular Arrhythmias
- 2.11.13 Sensor
- 2.11.14 Sensing
- 2.11.15 Impedances
- 2.11.16 Automatic Threshold
- 2.11.17 Asynchronous Pacing Modes
- 2.11.18 Far-Field IEGM for Threshold Testing (Leadless ECG)
- 2.11.19 Advanced AT/AF Diagnostics (Lumax 700/740 only)
- 2.11.20 Atrial NIPS (Lumax 700/740 & 600/640 only)
- 3. Sterilization and Storage
- 4. Implant Procedure
- 5. Follow-up Procedures
- 6. Technical Specifications
104 Lumax Technical Manual
At the programmed start time (Begin of Night), the rate gradually
adapts to the night rate. When the internal clock reaches the
programmed end time (End of Night), the pacing rate gradually
changes to the programmed basic rate. The rate changes at the
same rate as the Sensor Gain decrease and increase
parameters.
NOTE:
The Night Mode time is based on the programmer clock.
Therefore, the programmer time should be checked prior to
device programming. If a patient travels across different time
zones, the Night Mode time may require adjustment.
2.9.4 Rate Hysteresis
The ability to decrease the effective lower rate through
Hysteresis is intended to preserve a spontaneous rhythm. The
pulse generator operates by waiting for a sensed event throughout
the effective lower rate interval (Hysteresis interval). If no sensed
event occurs, a pacing pulse is emitted following the Hysteresis
interval.
Hysteresis can be programmed OFF or to values as low as
-90 bpm in Lumax 300/340 & 500/540 models (-65 bpm in the
Lumax 600/640 & 700/740 models) of the basic rate. Hysteresis
is initiated by a sensed event. The resulting Hysteresis rate is
always less than the lower rate. The Hysteresis rate can only be
programmed to provide a basic rate that is 30 bpm or greater.
NOTES:
If rate adaptation is active, the Hysteresis rate is based on the
current sensor-indicated rate and the value of the
programmable parameter.
If Hysteresis is used in the DDI mode, the AV delay must be
programmed shorter than the spontaneous AV conduction
time. Otherwise, stimulation in the absence of spontaneous
activity occurs at the hysteresis rate instead of the lower rate.