User's Guide
Table Of Contents
- XBee/XBee-PRO S2C 802.15.4 RF Module User Guide
- Technical specifications
- Hardware
- Configure the XBee/XBee-PRO S2C 802.15.4 RF Module
- Modes
- Operation
- AT commands
- Special commands
- Networking and security commands
- C8 (802.15.4 Compatibility)
- CH (Operating Channel)
- ID (Network ID)
- DH (Destination Address High)
- DL (Destination Address Low)
- MY (Source Address)
- SH (Serial Number High)
- SL (Serial Number Low)
- MM (MAC Mode)
- RR (XBee Retries)
- RN (Random Delay Slots)
- ND (Network Discovery)
- NT (Node Discover Timeout)
- NO (Node Discovery Options)
- DN (Discover Node)
- CE (Coordinator Enable)
- SC (Scan Channels)
- SD (Scan Duration)
- A1 (End Device Association)
- A2 (Coordinator Association)
- AI (Association Indication)
- DA (Force Disassociation)
- FP (Force Poll)
- AS (Active Scan)
- ED (Energy Detect)
- EE (Encryption Enable)
- KY (AES Encryption Key)
- NI (Node Identifier)
- NP (Maximum Packet Payload Bytes)
- RF interfacing commands
- Sleep commands
- Serial interfacing commands
- I/O settings commands
- D0 (DIO0/AD0)
- D1 (DIO1/AD1)
- D2 (DIO2/AD2)
- D3 (DIO3/AD3)
- D4 (DIO4)
- D5 (DIO5/ASSOCIATED_INDICATOR)
- D8 (DIO8/SLEEP_REQUEST)
- P0 (RSSI/PWM0 Configuration)
- P1 (PWM1 Configuration)
- P2 (SPI_MISO)
- M0 (PWM0 Duty Cycle)
- M1 (PWM1 Duty Cycle)
- P5 (SPI_MISO)
- P6 (SPI_MOSI Configuration)
- P7 (SPI_SSEL )
- P8 (SPI_SCLK)
- P9 (SPI_ATTN)
- PR (Pull-up/Down Resistor Enable)
- PD (Pull Up/Down Direction)
- IU (I/O Output Enable)
- IT (Samples before TX)
- IS (Force Sample)
- IO (Digital Output Level)
- IC (DIO Change Detect)
- IR (Sample Rate)
- RP (RSSI PWM Timer)
- I/O line passing commands
- Diagnostic commands
- Command mode options
- Operate in API mode
- API mode overview
- API frame specifications
- Escaped characters in API frames
- Frame descriptions
- TX Request: 64-bit address frame - 0x00
- TX Request: 16-bit address - 0x01
- AT Command frame - 0x08
- AT Command - Queue Parameter Value frame - 0x09
- Remote AT Command Request frame - 0x17
- RX Packet: 64-bit Address frame - 0x80
- Receive Packet: 16-bit address frame - 0x81
- RX (Receive) Packet: 64-bit address IO frame- 0x82
- RX Packet: 16-bit address I/O frame - 0x83
- AT Command Response frame - 0x88
- TX Status frame - 0x89
- Modem Status frame - 0x8A
- Remote Command Response frame - 0x97
- Regulatory information
- Load 802.15.4 firmware on ZB devices
- Migrate from XBee through-hole to surface-mount devices
- PCB design and manufacturing
Hardware Design notes
XBee/XBee-PRO S2C 802.15.4 RF Module User Guide
23
Pin Name Direction Function
30 DIO3/AD3 Both
Digital I/O 3 / Analog input 3
31 DIO2/AD2 Both
Digital I/O 2 / Analog input 2
32 DIO1/AD1 Both
Digital I/O 1 / Analog input 1
33 DIO0/AD0 Both
Digital I/O 0 / Analog input 0
34 [Reserved] -
Do not connect
35 GND -
Ground
36 RF Both
RF connection
37 [Reserved] -
Do not connect
Notes
Minimum connections: VCC, GND, DOUT and DIN.
Minimum connections for updating firmware: VCC, GND, DIN, DOUT, RTS and DTR.
The table specifies signal direction with respect to the device.
The device includes a 50 kΩ pull-up resistor attached to RESET.
Use the PR (Pull-up/Down Resistor Enable) command to configure several of the input pull-ups.
You can connect other pins to external circuitry for convenience of operation including the Associate
LED pin (pin 15). The Associate LED flashes differently depending on the state of the device.
Leave any unused pins disconnected.
Design notes
The following guidelines help to ensure a robust design.
Power supply design
A poor power supply can lead to poor device performance, especially if you do not keep the supply
voltage within tolerance or if it is excessively noisy. To help reduce noise, place a 1.0 μF and 8.2 pF
capacitor as near as possible to pin 1 on the PCB. If you are using a switching regulator for the power
supply, switch the frequencies above 500 kHz. Limit the power supply ripple to a maximum 100 mV
peak to peak.
Board layout
We design XBee devices to be self sufficient and have minimal sensitivity to nearby processors,
crystals or other printed circuit board (PCB) components. Keep power and ground traces thicker than
signal traces and make sure that they are able to comfortably support the maximum current
specifications. There are no other special PCB design considerations to integrate XBee devices, with
the exception of antennas.
Antenna performance
Antenna location is important for optimal performance. The following suggestions help you achieve
optimal antenna performance. Point the antenna up vertically (upright). Antennas radiate and receive