Specifications
Introduction and Specifications
RVP8 User’s Manual
March 2006
1–11
Calibration Plot for RVP8/IFD
The figure above shows a calibration plot for a 14-bit IFD with the digital filter matched to a 2
microsecond pulse. The performance in this case is >100 dB dynamic range.
The RVP8 performs several real time signal corrections to the I/Q samples from the Rx,
including:
Amplitude Correction- A running average of the transmit pulse power in the magnetron burst
channel is computed in real-time by the RVP8/Rx. The individual received I/Q samples are
corrected for pulse–to–pulse deviations from this average. This can substantially improve the
“phase stability” of a magnetron system to improve the clutter cancelation performance to near
Klystron levels.
Phase Correction- The phase of the transmit waveform is measured for each pulse (either the
burst pulse for magnetron systems or the Tx Waveform for coherent systems). The I/Q values
are adjusted for the actual measured phase. The coherency achievable is better than 0.1 degrees
by this technique.
Large Signal Linearization- When an IF signal saturates, there is still considerable information
in the signal since only the peaks are clipped. The proprietary large signal linearization
algorithm used in the RVP8 provides an extra 3 to 4 dB of dynamic range by accounting for the
effects of saturation.
The RVP8/Rx card provides the same comprehensive configuration and test utilities as the
RVP7, with the difference that no external host computer is required to run the utilities. These
utilities can be run either locally or remotely, over the network! Some examples are shown
below:










