User manual
Copyright © 2000 EIM Company, Inc 13840 Pike Road Missouri City, TX 77489 (281) 499-1561 Page 2
Controlinc Digital Futronic VIII User Manual
Model DF320A Version 1.0
(
2003-01-31
)
1.2.2. Variable Frequency Controller Unit (VFC)
Speed of a 3-phase motor is controlled by frequency of the applied power. Operating at 60 Hz will
cause motor to run at normal full speed. Operating at a frequency less than 60 Hz will cause motor to
run a percentage of normal full speed. The VFC can control frequency of the power output from 0.1 Hz
to 400 Hz in 0.1 Hz increments. Variable Frequency Controller (VFC) receives 50 - 60 Hz, single or 3-
phase AC electrical power input and supplies power to the motor of the actuator on command from the
M2CP containing the DCM320A. The AC input power is converted to DC and stored on a bank of
capacitors. The DC power is converted back into 3-phase AC power by switching the transistor outputs
at a high frequency, typically 10KHz. Power is switched in an alternating pattern from positive polarity to
negative polarity to positive polarity, etc. at the frequency rate programmed by the microprocessor to
determine motor speed. Switching polarity is done in a sequence on each of the three phases at a
delay time equal to 120 degrees separation between phases based on the frequency. Frequency is
normally ramped up at a programmed acceleration rate from one frequency to the next higher
frequency. Frequency is also ramped down at a programmed deceleration rate from a higher frequency
to the next lower frequency. Programming the VFC is typically via a front panel keyboard/display
terminal. Some drives may also support programming via special software on a PC. The VFC may be
internal, close coupled or enclosed in a separate enclosure remote to actuator. The VFC must be
located within 500 feet of the actuator. Refer to the VFC operations manual supplied with the VFC
drive for setup and programming instructions.
1.2.3. Modular Construction
Extensive use of surface mount technology (SMT) has allowed EIM to maintain single board
construction of the DCM320A which plugs into the M2CP. The digital control module may be replaced
by plugging in a replacement module without disabling local control functions. EIM has maintained
mechanical gearing of limit and torque switches which keep in step with movement of the actuator
when power is removed without battery back-up. Local control pushbuttons and selector switches are
not dependent on the DCM320A. The actuator is able to operate in the manual mode even while the
DCM320A is removed.