2010
Table Of Contents
- Contents
- Overview
- Maya Basics
- Polygonal Modeling
- Introduction
- Preparing for the lesson
- Lesson 1: Modeling a polygonal mesh
- Introduction
- Setting modeling preferences
- Using 2D reference images
- Creating a polygon primitive
- Modeling in shaded mode
- Model symmetry
- Selecting components by painting
- Selecting edge loops
- Editing components in the orthographic views
- Editing components in the perspective view
- Drawing a polygon
- Extruding polygon components
- Bridging between edges
- Adding polygons to a mesh
- Splitting polygon faces
- Terminating edge loops
- Deleting construction history
- Mirror copying a mesh
- Working with a smoothed mesh
- Creasing and hardening edges on a mesh
- Beyond the lesson
- Lesson 2: Sculpting a polygon mesh
- NURBS Modeling
- Subdivision Surfaces
- Animation
- Introduction
- Preparing for the lessons
- Lesson 1: Keyframes and the Graph Editor
- Lesson 2: Set Driven Key
- Lesson 3: Path animation
- Lesson 4: Nonlinear animation with Trax
- Introduction
- Open the first scene for the lesson
- Creating clips with Trax
- Changing the position of clips with Trax
- Editing the animation of clips
- Reusing clips within Trax
- Soloing and muting tracks
- Scaling clips within Trax
- Open the second scene for the lesson
- Creating clips from motion capture data
- Extending the length of motion capture data
- Redirecting the motion within a clip
- Beyond the lesson
- Lesson 5: Inverse kinematics
- Introduction
- Open the scene for the lesson
- Understanding hierarchies
- Viewing hierarchies using the Hypergraph
- Creating a skeleton hierarchy
- Parenting a model into a skeleton hierarchy
- Applying IK to a skeleton hierarchy
- Creating a control object for an IK system
- Constraining an IK system
- Limiting the range of motion of an IK system
- Simplifying the display of a hierarchy
- Applying parent constraints on an IK system
- Planning an animation for an IK system
- Animating an IK system
- Beyond the lesson
- Character Setup
- Polygon Texturing
- Rendering
- Introduction
- Preparing for the lessons
- Lesson 1: Rendering a scene
- Introduction
- Open the scene for the lesson
- Creating shading materials for objects
- Refining shading materials for objects
- Maya renderers
- Rendering a single frame using IPR
- Rendering using the Maya software renderer
- Batch rendering a sequence of animation frames
- Viewing a sequence of rendered frames
- Beyond the lesson
- Lesson 2: Shading surfaces
- Lesson 3: Lights, shadows, and cameras
- Lesson 4: Global Illumination
- Lesson 5: Caustics
- Dynamics
- Painting
- Introduction
- Preparing for the lessons
- Lesson 1: Painting in 2D using Paint Effects
- Lesson 2: Painting in 3D using Paint Effects
- Introduction
- Preparing for the lessons
- Brushes and strokes
- Rendering Paint Effects strokes
- Paint Effects on 3D objects
- Creating a surface to paint on
- Painting on objects
- Using turbulence with brush stroke tubes
- Using additional preset brushes
- Mesh brushes
- Converting mesh strokes to polygons
- Modifying a converted polygonal mesh
- Beyond the lesson
- Lesson 3: Painting textures on surfaces
- Expressions
- Scripting in Maya
- Assets
- Hair
- Fluid Effects
- Fur
- Introduction
- Preparing for the lessons
- Lesson 1: Assigning a fur description
- Introduction
- Lesson setup
- Duplicating objects across an axis of symmetry
- Renaming surfaces on a model
- Assigning objects to a reference layer
- Assigning a fur description preset to a model
- Reversing surface normals
- Modifying the fur direction
- Painting fur attributes
- Modifying the color of a fur description
- Creating a new fur description
- Beyond the lesson
- Lesson 2: Rendering fur
- nCloth
- Introduction
- Preparing for the lessons
- Lesson 1: Creating nCloth collisions
- Lesson 2: Creating nCloth constraints
- Lesson 3: Creating nCloth Clothing
- Introduction
- Lesson setup
- Making the dress into an nCloth object
- Making the character wear the dress
- Caching nCloth to speed up playback
- Adjusting the fit of the dress
- Defining the behavior of nCloth clothing
- Painting nCloth properties
- Open the second scene for the lesson
- Setting the initial state
- Constraining nCloth clothing
- Improving the quality of the nCloth simulation
- Smoothing nCloth clothing
- Beyond the lesson
- nParticles
- Introduction
- Preparing for the tutorials
- Lesson 1: Creating nParticles
- Lesson 2: Creating a smoke simulation with nParticles
- Lesson 3: Creating a liquid simulation with nParticles
- Introduction
- Lesson setup
- Creating a Water style nParticle object
- Adjusting Liquid Simulation attributes
- Adding fluidity to the nParticles
- Open the second scene for the lesson
- Convert nParticles to a polygon mesh
- Cache your nParticle simulation
- Adding Motion Streak
- Open the third scene for the lesson
- Render your liquid simulation
- Assigning material shaders
- Rendering a simulated frame
- Beyond the lesson
- Live
- Index
is because the default UVs for a Maya cube primitive are created based
on a predetermined default shape and do not get updated if the shape
or scale of the primitive is modified later on.
There are a number of things you can do to correct these issues depending on
the situation. For this lesson, you will correct the UV and texture map
misalignment by doing the following:
■ Map a new set of UVs for the cracker box model that better matches the
individual faces of the cracker box. (While the existing UVs could be
modified, you’ll learn how to create new UVs in this lesson that will better
match the size and scale of the 3D model.
■ Ensure the new UVs fit within the 0 to 1 UV range in the UV Texture
Editor.
■ Reposition the UVs so that they correlate to specific locations on the 2D
image using the UV Texture Editor. This will ensure that the various sides
of the box receive the correct regions of the texture map.
Mapping UV texture coordinates
It is often necessary to create new UVs for a surface mesh in order to texture
map it correctly. These situations include:
■ Texture mapping a surface that doesn’t have existing UVs.
This can occur when you import 3D models from other software
applications that don’t create UVs.
■ When the UVs for a surface are badly jumbled or are missing some UVs.
This can occur when a surface has been edited or modified in some way
and it becomes hard to determine what UVs may be missing as a result.
■ When you need a unique set of UVs for a particular purpose.
For example, if you want to paint a texture map directly onto a 3D surface,
you may want to map UVs that allow you to paint using the 3D paint tools
in Maya. Alternatively, you may want to create a unique set of UVs
specifically for baking textures or light maps.
Maya lets you create UVs for polygonal and subdivision surfaces using a process
called projection mapping, also referred to as mapping UVs. Maya provides several
projection mapping types that map what gets viewed by a particular projection
Mapping UV texture coordinates | 375