Datasheet
28
4341H–MP3–10/07
AT8xC51SND2C/MP3B
DPTR0 and DPTR1 are seen by the CPU as DPTR and are accessed using the SFR addresses
83h and 84h that are the DPH and DPL addresses. The DPS bit in AUXR1 register (see Table 6-
2) is used to select whether DPTR is the data pointer 0 or the data pointer 1 (see Figure 7-6).
Figure 7-6. Dual Data Pointer Implementation
7.3.2 Application
Software can take advantage of the additional data pointers to both increase speed and reduce
code size, for example, block operations (copy, compare, search …) are well served by using
one data pointer as a “source” pointer and the other one as a “destination” pointer.
Below is an example of block move implementation using the 2 pointers and coded in assem-
bler. The latest C compiler also takes advantage of this feature by providing enhanced algorithm
libraries.
The INC instruction is a short (2 Bytes) and fast (6 CPU clocks) way to manipulate the DPS bit in
the AUXR1 register. However, note that the INC instruction does not directly force the DPS bit to
a particular state, but simply toggles it. In simple routines, such as the block move example, only
the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words,
the block move routine works the same whether DPS is '0' or '1' on entry.
; ASCII block move using dual data pointers
; Modifies DPTR0, DPTR1, A and PSW
; Ends when encountering NULL character
; Note: DPS exits opposite of entry state unless an extra INC AUXR1 is added
AUXR1 EQU 0A2h
move: mov DPTR,#SOURCE ; address of SOURCE
inc AUXR1 ; switch data pointers
mov DPTR,#DEST ; address of DEST
mv_loop: inc AUXR1 ; switch data pointers
movx A,@DPTR ; get a Byte from SOURCE
inc DPTR ; increment SOURCE address
inc AUXR1 ; switch data pointers
movx @DPTR,A ; write the Byte to DEST
inc DPTR ; increment DEST address
jnz mv_loop ; check for NULL terminator
end_move:
0
1
DPH0
DPH1
DPL0
0
1
DPS
AUXR1.0
DPH
DPL
DPL1
DPTR
DPTR0
DPTR1