User Manual
XBee® Wi-Fi RF Modules
© 2012 Digi International, Inc. 16
Poor power supply can lead to poor radio performance, especially if the supply voltage
is not kept within tolerance or is excessively noisy. To help reduce noise, a 1µF and
8.2pF capacitor are recommended to be placed as near to pin 1 on the PCB as possible.
If using a switching regulator for your power supply, switching frequencies above 500
kHz are preferred. Power supply ripple should be limited to a maximum 50mV peak to
peak.
Recommended Pin Connections
The only required pin connections are VCC, GND, and either DOUT and DIN or SPI_CLK,
SPI_nSSEL, SPI_MOSI, and SPI MISO. To support serial firmware updates, VCC, GND,
DOUT, DIN, RTS, and DTR should be connected.
All unused pins should be left disconnected. All inputs on the radio can be pulled high
with 30k internal pull-up resistors using the PR software command. No specific
treatment is needed for unused outputs.
For applications that need to ensure the lowest sleep current, inputs should never be
left floating. Use internal or external pull-up or pull-down resistors, or set the unused
I/O lines to outputs.
Other pins may be connected to external circuitry for convenience of operation. For
example, the Associate signal (pin 15) and the On_nSLEEP signal (pin 13) will change
level or behavior based on the state of the module.
Board Layout
XBee modules do not have any specific sensitivity to nearby processors, crystals or other
PCB components. Other than mechanical considerations, no special PCB placement is
required for integrating XBee radios except for those with integral antennas. In general,
Power and GND traces should be thicker than signal traces and be able to comfortably
support the maximum currents.
The radios are also designed to be self sufficient and work with the integrated and
external antennas without the need for additional ground planes on the host PCB.
However, considerations should be taken on the choice of antenna and antenna
location. Metal objects that are near an antenna cause reflections and may reduce the
ability for an antenna to efficiently radiate. Using an integral antenna in an enclosed
metal box will greatly reduce the range of a radio. For this type of application an
external antenna would be a better choice.
External antennas should be positioned away from metal objects as much as possible.
Metal objects next to the antenna or between transmitting and receiving antennas can
often block or reduce the transmission distance. Some objects that are often overlooked
are metal poles, metal studs or beams in structures, concrete (it is usually reinforced
with metal rods), metal enclosures, vehicles, elevators, ventilation ducts, refrigerators
and microwave ovens.