Specifications

Technical Reference
49
2.6 DMA Channels
Table 16. DMA Channels
DMA Channel Number Data Width System Resource
0 8 or 16 bits Open
1 8 or 16 bits Parallel port
2 8 or 16 bits Diskette drive
3 8 or 16 bits Parallel port (for ECP or EPP)
4 8 or 16 bits DMA controller
5 16 bits Open
6 16 bits Open
7 16 bits Open
2.7 PCI Interrupt Routing Map
This section describes interrupt sharing and how the interrupt signals are connected
between the PCI bus connectors and onboard PCI devices. The PCI specification
specifies how interrupts can be shared between devices attached to the PCI bus. In
most cases, the small amount of latency added by interrupt sharing does not affect
the operation or throughput of the devices. In some special cases where maximum
performance is needed from a device, a PCI device should not share an interrupt with
other PCI devices. Use the following information to avoid sharing an interrupt with a
PCI add-in card.
PCI devices are categorized as follows to specify their interrupt grouping:
INTA: By default, all add-in cards that require only one interrupt are in this
category. For almost all cards that require more than one interrupt, the first
interrupt on the card is also classified as INTA.
INTB: Generally, the second interrupt on add-in cards that require two or more
interrupts is classified as INTB. (This is not an absolute requirement.)
INTC and INTD: Generally, a third interrupt on add-in cards is classified as INTC
and a fourth interrupt is classified as INTD.
The ICH8DH has eight Programmable Interrupt Request (PIRQ) input signals. All PCI
interrupt sources either onboard or from a PCI add-in card connect to one of these
PIRQ signals. Some PCI interrupt sources are electrically tied together on the board
and therefore share the same interrupt.
Table 17 shows an example of how the
PIRQ signals are routed.