Datasheet
Table Of Contents
- 1/3.2-Inch System-On-A-Chip (SOC) CMOS Digital Image Sensor
- Features
- Applications
- Ordering Information
- General Description
- Feature Overview
- Typical Connection
- Ballout and Interface
- Architecture Overview
- Registers and Variables
- Registers
- Registers
- IFP Registers, Page 1
- IFP Registers, Page 2
- JPEG Indirect Registers
- Table 8: JPEG Indirect Registers (See Registers 30 and 31, Page 2)
- Firmware Driver Variables
- Table 9: Drivers IDs
- Table 10: Driver Variables-Monitor Driver (ID = 0)
- Table 11: Driver Variables-Sequencer Driver (ID = 1)
- Table 12: Driver Variables-Auto Exposure Driver (ID = 2)
- Table 13: Driver Variables-Auto White Balance (ID = 3)
- Table 14: Driver Variables-Flicker Detection Driver (ID = 4)
- Table 15: Driver Variables-Auto Focus Driver (ID = 5)
- Table 16: Driver Variables-Auto Focus Mechanics Driver (ID = 6)
- Table 17: Driver Variables-Mode/Context Driver (ID = 7)
- Table 18: Driver Variables-JPEG Driver (ID = 9)
- Table 19: Driver Variables-Histogram Driver (ID = 11)
- MCU Register List and Memory Map
- JPEG Indirect Registers
- Output Format and Timing
- Sensor Core
- Feature Description
- PLL Generated Master Clock
- PLL Setup
- Window Control
- Pixel Border
- Readout Modes
- Figure 20: 6 Pixels in Normal and Column Mirror Readout Modes
- Figure 21: 6 Rows in Normal and Row Mirror Readout Modes
- Table 30: Skip Values
- Figure 22: 8 Pixels in Normal and Column Skip 2x Readout Modes
- Figure 23: 16 Pixels in Normal and Column Skip 4x Readout Modes
- Figure 24: 32 Pixels in Normal and Column Skip 8x Readout Modes
- Figure 25: 64 Pixels in Normal and Column Skip 16x Readout Modes
- Table 31: Row Addressing
- Table 32: Column Addressing
- Frame Rate Control
- Context Switching
- Integration Time
- Flash STROBE
- Global Reset
- Analog Signal Path
- Analog Inputs AIN1-AIN3
- Firmware
- Firmware
- Start-Up and Usage
- General Purpose I/O
- Introduction
- GPIO Output Control Overview
- Waveform Programming
- Notification Signals
- Digital and Analog Inputs
- GPIO Software Drivers
- Auto Focus
- Figure 42: Search for Best Focus
- Figure 43: Scene with Two Potential Focus Targets at Different Distances from Camera
- Figure 44: Dependence of Luminance-Normalized Local Sharpness Scores on Lens Position
- Figure 45: Example of Position Weight Histogram Created by AF Driver
- Figure 46: Auto Focus Windows
- Figure 47: Computation of Sharpness Scores and Luminance Average for an AF Window
- Table 41: Examples of AF Filters that can be Programmed into the MT9D111
- Spectral Characteristics
- Electrical Specifications
- Packaging
- Appendix A: Two-Wire Serial Register Interface
- Protocol
- Sequence
- Bus Idle State
- Start Bit
- Stop Bit
- Slave Address
- Data Bit Transfer
- Acknowledge Bit
- No-Acknowledge Bit
- Page Register
- Sample Write and Read Sequences
- Figure 52: WRITE Timing to R0x09:0-Value 0x0284
- Figure 53: READ Timing from R0x09:0; Returned Value 0x0284
- Figure 54: WRITE Timing to R0x09:0-Value 0x0284
- Figure 55: READ Timing from R0x09:0; Returned Value 0x0284
- Figure 56: Two-Wire Serial Bus Timing Parameters
- Table 46: Two-wire Serial Bus Characteristics
- Revision History
PDF: 09005aef8202ec2e/Source: 09005aef8202ebf7 Micron Technology, Inc., reserves the right to change products or specifications without notice.
MT9D111__6_REV5.fm - Rev. B 2/06 EN
139 ©2004 Micron Technology, Inc. All rights reserved.
MT9D111 - 1/3.2-Inch 2-Megapixel SOC Digital Image Sensor
Firmware
Micron Confidential and Proprietary
High-Precision Timer
SFR 0x1048 is a high-precision timer is available for use in applications, and profiling
code during development. It is a 32-bit counter incremented every master clock, except
when in standby. To profile, read and store the timer before executing a routine. After the
routine exits, read the timer again and subtract from the initial value.
Safe and Test Modes
A safe mode is available to start MCU without running drivers. Set R195:1 and reset MCU
to enable this mode. Only monitor runs allowing to start ROM or load and start RAM
code.
R195:1 can also invoke the MCU and memory test mode.
Application Scheduling
Drivers run in synchrony with IFP image processing. As the frame comes through the
color pipeline in real time, certain statistics are calculated and become available. Typi-
cally, the flicker avoidance driver is active at the top of the frame. Auto focus measure-
ment window is located in the center of the image. Once its result is ready, the auto focus
and auto focus mechanics drivers execute. The exposure, white balance, and histogram
statistics windows nearly cover the entire image. Their result is available at the end of the
frame, when AE, WB, and histogram drivers are invoked. Finally, during the vertical
blanking, drivers upload calculated settings to sensor and SOC.
Monitor Driver
The main monitor function is to run code. Set the "arg1" to the address of the function to
be called, set “arg2” to an optional 16-bit parameter to be passed and set "cmd" to 0x01.
The sequencer driver calls the monitor driver typically once per frame. The desired func-
tion is invoked in one frame time or less. The monitor also provides CRC calculation
capability to check if the uploaded firmware was transmitted correctly.
Variable mon.ver contains firmware version number. mon.ver[7] = 1 indicates uploaded
firmware.
Flicker Avoidance
Auto Focus
Exposure, White Balance, Hist .
Upload registers










