User's Manual
MPR-1510 - 6 - Doc# 041313
AWID PROPRIETARY
through the use of a circulator. As shown in Figure 1, there is a 3-port device between
the Coupler and the band pass filter, which is called a circulator. A circulator is
physically constructed by a permanent magnet, a Y junction on a high-dielectric
ferromagnetic substrate, and a ferromagnetic enclosure to complete the flux field. A
circulator permits flow of RF energy in one direction only, e.g. from port 1 to 2, 2 to 3,
and 3 to 1. When one of the ports is terminated (matched condition), the other two are
isolated in the reverse direction. Many fixed-site RFID readers use circulators to ensure
that the power amplifier output flows from the amplifier (port 1) to the antenna (port 2),
and the received signal flows from the antenna (port 2) to the receiver (port 3). When
properly matched, a circulator can provide typically 15 to 18 dB of isolation between the
power amplifier output (port 1) and the receiver input (port 3), thereby reducing any in-
band interference from transmitter output to receiver input. MPR reader uses a similar
circuit to accomplish the same function, but in a much smaller physical size.
It should be noted that some fixed-site reader designs use separate transmit and receive
antennas to resolve this T/R signal isolation problem. Figure 2 is a block diagram of a
dual-antenna RFID reader. On the surface, this design has the advantage of allowing a
low-level design on the receive chain, which means lower compression point for mixers,
lower saturation point for amplifiers, and the possibility of using a front-end amplifier to
enhance receiver sensitivity. Such dual-antenna design becomes problematic in a
mobile environment, where signal strength is not easily controlled. A well-designed dual-
antenna reader can usually provide 25 to 30 dB of isolation between the two signal
paths, reducing the unwanted signal in the receive chain to –20 dBm. However, when
the RFID reader antenna is facing a tag placed on a large metallic object at a distance of
12 inches, the reflected transmitter signal at the receiver input can be as high as 13dBm,
thereby eliminating any advantage of the dual-antenna design.
In actual circuit implementation, AWID developed a proprietary circuit to duplicate the
functions of the circulator, with improved directivity and isolate
Figure 1 Block Diagram, Single-Antenna RFID Reader
FREQUENCY
SYNTHESIZER
1.1.3
1.1.4
I/Q
DEMOD
Driver
AMP
Power
AMP
COUPLER
XMIT/
RCVE
A/D
CPU I/O
XMTR
CIRCULATOR
BPF
RCV
IO
RF
I
Q
I
Q
FREQ
AMPL
1
2
3