Datasheet
TMP01
Rev. E | Page 13 of 20
BUFFERING THE TEMPERATURE OUTPUT PIN
The VPTAT sensor output is a low impedance dc output voltage
with a 5 mV/K temperature coefficient, that is useful in multiple
measurement and control applications. In many applications,
this voltage needs to be transmitted to a central location for
processing. The buffered VPTAT voltage output is capable of
500 A drive into 50 pF (maximum).
Consider external amplifiers for interfacing VPTAT to external
circuitry to ensure accuracy, and to minimize loading which
could create dissipation-induced temperature sensing errors.
An excellent general-purpose buffer circuit using the OP177 is
shown in Figure 25. It is capable of driving over 10 mA, and
remains stable under capacitive loads of up to 0.1 F. Other
interfacing ideas are also provided in this section.
DIFFERENTIAL TRANSMITTER
In noisy industrial environments, it is difficult to send an
accurate analog signal over a significant distance. However,
by sending the signal differentially on a wire pair, these errors
can be significantly reduced. Because the noise is picked up
equally on both wires, a receiver with high common-mode
input rejection can be used to cancel out the noise very effec-
tively at the receiving end. Figure 26 shows two amplifiers used
to send the signal differentially, and an excellent differential
receiver, the AMP03, which features a common-mode rejection
ratio of 95 dB at dc and very low input and drift errors.
TEMPERATURE
SENSOR AND
VOLTAGE
REFERENCE
VREF
VPTAT
1
2
3
4
8
7
6
5
HYSTERESIS
GENERATOR
WINDOW
COMPARATOR
TMP01
OP177
R1
R2
R3
VPTAT
V
OUT
C
L
V
+
V–
V+
100Ω
10kΩ
0.1µF
0
0333-025
Figure 25. Buffer VPTAT to Handle Difficult Loads
4 mA TO 20 mA CURRENT LOOP
Another common method of transmitting a signal over long
distances is to use a 4 mA to 20 mA loop, as shown in Figure 27.
An advantage of using a 4 mA to 20 mA loop is that the
accuracy of a current loop is not compromised by voltage drops
across the line. One requirement of 4 mA to 20 mA circuits is
that the remote end must receive all of its power from the loop,
meaning that the circuit must consume less than 4 mA.
Operating from 5 V, the quiescent current of the TMP01 is
500 A maximum, and the OP90s is 20 A maximum, totaling
less than 4 mA. Although not shown, the open collector outputs
and temperature setting pins can be connected to do any local
control of switching.
TEMPERATURE
SENSOR AND
VOLTAGE
REFERENCE
VREF
VPTAT
1
2
3
4
8
7
6
5
HYSTERESIS
GENERATOR
WINDOW
COMPARATOR
TMP01
1/2
OP297
1/2
OP297
AMP03
R1
R2
R3
VPTAT
V
OUT
V
+
50Ω
10kΩ
10kΩ
50Ω
V–
V+
10kΩ
00333-026
Figure 26. Send the Signal Differentially for Noise Immunity