Datasheet

ADuM2400/ADuM2401/ADuM2402 Data Sheet
Rev. E | Page 18 of 24
APPLICATION INFORMATION
PC BOARD LAYOUT
The ADuM240x digital isolator requires no external interface
circuitry for the logic interfaces. Power supply bypassing is
strongly recommended at the input and output supply pins (see
Figure 17). Bypass capacitors are most conveniently connected
between Pin 1 and Pin 2 for V
DD1
and between Pin 15 and Pin 16
for V
DD2
. The capacitor value should be between 0.01 μF and 0.1 μF.
The total lead length between both ends of the capacitor and
the input power supply pin should not exceed 20 mm. Bypassing
between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should
be considered unless the ground pair on each package side are
connected close to the package.
V
DD1
GND
1
V
IA
V
IB
V
IC/
V
OC
V
ID/
V
OD
V
E1
GND
1
V
DD2
GND
2
V
OA
V
OB
V
OC/
V
IC
V
OD/
V
ID
V
E2
GND
2
05007-017
Figure 17. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, ensure
that board coupling across the isolation barrier is minimized.
Furthermore, the board layout should be designed such that
any coupling that does occur equally affects all pins on a given
component side. Failure to ensure this could cause voltage
differentials between pins exceeding the devices Absolute
Maximum Ratings, thereby leading to latch-up or permanent
damage.
See the
AN-1109 Application Note for board layout guidelines.
PROPAGATION DELAY-RELATED PARAMETERS
Propagation delay is a parameter that describes the length of time
it takes for a logic signal to propagate through a component.
The propagation delay to a logic low output can differ from the
propagation delay to logic high.
INPUT (
V
Ix
)
OUTPUT (V
Ox
)
t
PLH
t
PHL
50%
50%
05007-018
Figure 18. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these
two propagation delay values and is an indication of how
accurately the input signals timing is preserved.
Channel-to-channel matching refers to the maximum amount
the propagation delay differs among channels within a single
ADuM240x component.
Propagation delay skew refers to the maximum amount the
propagation delay differs among multiple ADuM240x components
operated under the same conditions.
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY
Positive and negative logic transitions at the isolator input cause
narrow (~1 ns) pulses to be sent via the transformer to the decoder.
The decoder is bistable and is therefore either set or reset by the
pulses, indicating input logic transitions. In the absence of logic
transitions at the input for more than ~1 μs, a periodic set of
refresh pulses indicative of the correct input state are sent to
ensure dc correctness at the output. If the decoder receives no
internal pulses for more than approximately 5 μs, the input side
is assumed to be without power or nonfunctional; in which
case, the isolator output is forced to a default state (see Table 1 1 )
by the watchdog timer circuit.
The limitation on the ADuM240x’s magnetic field immunity is
set by the condition in which induced voltage in the transformer’s
receiving coil is large enough to either falsely set or reset the
decoder. The following analysis defines the conditions under
which this can occur. The 3 V operating condition of the
ADuM240x is examined because it represents the most
susceptible mode of operation.
The pulses at the transformer output have an amplitude greater
than 1.0 V. The decoder has a sensing threshold at about 0.5 V,
therefore establishing a 0.5 V margin in which induced voltages
can be tolerated. The voltage induced across the receiving coil is
given by
V = (−/dt)Σ∏r
n
2
; n = 1, 2,…, N
where:
β is the magnetic flux density (gauss).
N is the number of turns in the receiving coil.
r
n
is the radius of the n
th
turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM240x and
an imposed requirement that the induced voltage be at most
50% of the 0.5 V margin at the decoder, a maximum allowable
magnetic field is calculated as shown in Figure 19.
MAGNETIC FIELD FREQUENCY (Hz)
100
MAXIMUM ALLOWABLE MAGNETIC FLUX
DENSITY (kgauss)
0.001
1M
10
0.01
1k 10k 10M
0.1
1
100M100k
05007-019
Figure 19. Maximum Allowable External Magnetic Flux Density