Datasheet
Table Of Contents
- Features
- Applications
- General Description
- Revision History
- Functional Block Diagram
- Specifications
- Absolute Maximum Ratings
- Pin Configurations and Function Descriptions
- Terminology
- Overview of the ARM7TDMI Core
- Thumb Mode (T)
- Multiplier (M)
- EmbeddedICE (I)
- ARM Registers
- Interrupt Latency
- Memory Organization
- Flash/EE Control Interface
- Memory Mapped Registers
- Complete MMR Listing
- Reset
- Oscillator, PLL, and Power Control
- ADC Circuit Information
- Reference Sources
- Diagnostic Current Sources
- Sinc3 Filter
- ADC Chopping
- Programmable Gain Amplifier
- Excitation Sources
- ADC Low Power Mode
- ADC Comparator and Accumulator
- Temperature Sensor
- ADC MMR Interface
- ADC Status Register
- ADC Interrupt Mask Register
- ADC Mode Register
- Primary ADC Control Register
- Auxiliary ADC Control Register
- ADC Filter Register
- ADC Configuration Register
- Primary Channel ADC Data Register
- Auxiliary Channel ADC Data Register
- Primary Channel ADC Offset Calibration Register
- Auxiliary Channel ADC Offset Calibration Register
- Primary Channel ADC Gain Calibration Register
- Auxiliary Channel Gain Calibration Register
- Primary Channel ADC Result Counter Limit Register
- Primary Channel ADC Result Counter Register
- Primary Channel ADC Threshold Register
- Primary Channel ADC Threshold Counter Limit Register
- Primary Channel ADC Threshold Counter Register
- Primary Channel ADC Accumulator Register
- Excitation Current Sources Control Register
- Example Application Circuits
- DAC Peripherals
- Nonvolatile Flash/EE Memory
- Processor Reference Peripherals
- Timers
- Pulse-Width Modulator
- Pulse-Width Modulator General Overview
- PWMCON Control Register
- PWM0COM0 Compare Register
- PWM0COM1 Compare Register
- PWM0COM2 Compare Register
- PWM0LEN Register
- PWM1COM0 Compare Register
- PWM1COM1 Compare Register
- PWM1COM2 Compare Register
- PWM1LEN Register
- PWM2COM0 Compare Register
- PWM2COM1 Compare Register
- PWM2COM2 Compare Register
- PWM2LEN Register
- PWMCLRI Register
- Pulse-Width Modulator General Overview
- UART Serial Interface
- Baud Rate Generation
- UART Register Definitions
- I2C
- Configuring External Pins for I2C Functionality
- Serial Clock Generation
- I2C Bus Addresses
- I2C Registers
- I2C Master Registers
- I2C Master Control, I2CMCON Register
- I2C Master Status, I2CMSTA, Register
- I2C Master Receive, I2CMRX, Register
- I2C Master Transmit, I2CMTX, Register
- I2C Master Read Count, I2CMCNT0, Register
- I2C Master Current Read Count, I2CMCNT1, Register
- I2C Address 0, I2CADR0, Register
- I2C Address 1, I2CADR1, Register
- I2C Master Clock Control, I2CDIV, Register
- I2C Slave Registers
- I2C Common Registers
- I2C Master Registers
- Serial Peripheral Interface
- General-Purpose I/O
- Hardware Design Considerations
- Outline Dimensions

Data Sheet ADuC7060/ADuC7061
Rev. D | Page 47 of 108
Bit Name Description
6:4 ADC1REF[2:0] Auxiliary channel ADC reference select.
[000] = internal reference selected. In ADC low power mode, the voltage reference selection is controlled by
ADCMODE[5].
[001] = external reference inputs (VREF+, VREF−) selected. Set the HIGHEXTREF1 bit if reference voltage
exceeds 1.3 V.
[010] = auxiliary external reference inputs (ADC4/EXT_REF2IN+, ADC5/EXT_REF2IN−) selected. Set the
HIGHEXTREF1 bit if reference voltage exceeds 1.35 V.
[011] = (AVDD, AGND) divide-by-2 selected. If this configuration is selected, the HIGHEXTREF1 bit is set
automatically.
[100] = (AVDD, ADC3). ADC3 can be used as the negative input terminal for the reference source.
[101] to [111] = reserved.
3:2 BUF_BYPASS[1:0] Buffer bypass.
[00] = full buffer on. Both positive and negative buffer inputs active.
[01] = negative buffer is bypassed, positive buffer is on.
[10] = negative buffer is on, positive buffer is bypassed.
[11] = full buffer bypass. Both positive and negative buffer inputs are off.
1:0
Digital gain. Select for auxiliary ADC inputs.
[00] = ADC1 gain = 1.
[01] = ADC1 gain = 2.
[10] = ADC1 gain = 4.
[11] = ADC1 gain = 8.
ADC Filter Register
Name: ADCFLT
Address: 0xFFFF0514
Default value: 0x0007
Access: Read and write
Function: The ADC filter MMR is a 16-bit register that controls the speed and resolution of both the on-chip ADCs. Note that, if
ADCFLT is modified, the primary and auxiliary ADCs are reset.
Table 45. ADCFLT MMR Bit Designations
Bit Name Description
15 CHOPEN Chop enable. Set by user to enable system chopping of all active ADCs. When this bit is set, the ADC has very low offset
errors and drift, but the ADC output rate is reduced by a factor of 3 if AF = 0 (see sinc3 decimation factor, Bits[6:0] in this
table). If AF > 0, then the ADC output update rate is the same with chop on or off. When chop is enabled, the settling time
is two output periods.
14 RAVG2 Running average-by-2 enable bit.
Set by user to enable a running-average-by-2 function, reducing ADC noise. This function is automatically enabled when
chopping is active. It is an optional feature when chopping is inactive, and if enabled (when chopping is inactive), does
not reduce the ADC output rate but does increase the settling time by one conversion period.
Cleared by user to disable the running average function.
13:8 AF[5:0] Averaging factor (AF). The values written to these bits are used to implement a programmable first-order sinc3 post filter.
The averaging factor can further reduce ADC noise at the expense of output rate as described in Bits[6:0] (sinc3
decimation factor) in this table.