Datasheet
Table Of Contents
- Features
- Applications
- General Description
- Revision History
- Functional Block Diagram
- Specifications
- Absolute Maximum Ratings
- Pin Configurations and Function Descriptions
- Terminology
- Overview of the ARM7TDMI Core
- Thumb Mode (T)
- Multiplier (M)
- EmbeddedICE (I)
- ARM Registers
- Interrupt Latency
- Memory Organization
- Flash/EE Control Interface
- Memory Mapped Registers
- Complete MMR Listing
- Reset
- Oscillator, PLL, and Power Control
- ADC Circuit Information
- Reference Sources
- Diagnostic Current Sources
- Sinc3 Filter
- ADC Chopping
- Programmable Gain Amplifier
- Excitation Sources
- ADC Low Power Mode
- ADC Comparator and Accumulator
- Temperature Sensor
- ADC MMR Interface
- ADC Status Register
- ADC Interrupt Mask Register
- ADC Mode Register
- Primary ADC Control Register
- Auxiliary ADC Control Register
- ADC Filter Register
- ADC Configuration Register
- Primary Channel ADC Data Register
- Auxiliary Channel ADC Data Register
- Primary Channel ADC Offset Calibration Register
- Auxiliary Channel ADC Offset Calibration Register
- Primary Channel ADC Gain Calibration Register
- Auxiliary Channel Gain Calibration Register
- Primary Channel ADC Result Counter Limit Register
- Primary Channel ADC Result Counter Register
- Primary Channel ADC Threshold Register
- Primary Channel ADC Threshold Counter Limit Register
- Primary Channel ADC Threshold Counter Register
- Primary Channel ADC Accumulator Register
- Excitation Current Sources Control Register
- Example Application Circuits
- DAC Peripherals
- Nonvolatile Flash/EE Memory
- Processor Reference Peripherals
- Timers
- Pulse-Width Modulator
- Pulse-Width Modulator General Overview
- PWMCON Control Register
- PWM0COM0 Compare Register
- PWM0COM1 Compare Register
- PWM0COM2 Compare Register
- PWM0LEN Register
- PWM1COM0 Compare Register
- PWM1COM1 Compare Register
- PWM1COM2 Compare Register
- PWM1LEN Register
- PWM2COM0 Compare Register
- PWM2COM1 Compare Register
- PWM2COM2 Compare Register
- PWM2LEN Register
- PWMCLRI Register
- Pulse-Width Modulator General Overview
- UART Serial Interface
- Baud Rate Generation
- UART Register Definitions
- I2C
- Configuring External Pins for I2C Functionality
- Serial Clock Generation
- I2C Bus Addresses
- I2C Registers
- I2C Master Registers
- I2C Master Control, I2CMCON Register
- I2C Master Status, I2CMSTA, Register
- I2C Master Receive, I2CMRX, Register
- I2C Master Transmit, I2CMTX, Register
- I2C Master Read Count, I2CMCNT0, Register
- I2C Master Current Read Count, I2CMCNT1, Register
- I2C Address 0, I2CADR0, Register
- I2C Address 1, I2CADR1, Register
- I2C Master Clock Control, I2CDIV, Register
- I2C Slave Registers
- I2C Common Registers
- I2C Master Registers
- Serial Peripheral Interface
- General-Purpose I/O
- Hardware Design Considerations
- Outline Dimensions

ADuC7060/ADuC7061 Data Sheet
Rev. D | Page 34 of 108
OSCILLATOR, PLL, AND POWER CONTROL
CLOCKING SYSTEM
The ADuC706x integrates a 32.768 kHz ±3% oscillator, a clock
divider, and a PLL. The PLL locks onto a multiple of the inter-
nal oscillator or an external 32.768 kHz crystal to provide a stable
10.24 MHz clock (UCLK) for the system. To allow power saving,
the core can operate at this frequency or at binary submultiples
of it. The actual core operating frequency, UCLK/2
CD
, is refered
to as HCLK. The default core clock is the PLL clock divided by 8
(CD = 3) or 1.28 MHz.
PLL
CORE
CD
10.24MHz
32.768kHz
*32.768kHz
±
3%
HCLK
UCLK
OCLK
WATCHDOG
TIMER
WAKE-UP
TIMER
INT. 32kHz
OSCILLATOR*
CRYSTAL
OSCILLATOR
XCLKO
XCLKI
ANALOG
PERIPHERALS
/2
CD
I
2
C
07079-008
P2.0/EXTCLK
Figure 13. Clocking System
External Crystal Selection
To switch to an external crystal, users must follow this procedure:
1. Enable the Timer1 interrupt and configure it for a timeout
period of >120 µs.
2. Follow the write sequence to the PLLCON register, setting the
OSEL bits to [10] and clearing the EXTCLK bit.
3. Force the part into nap mode by following the correct write
sequence to the POWCON register.
4. When the part is interrupted from nap mode by the Timer1
interrupt source, the clock source has switched to the external
crystal.
Example source code
T1LD = 0x80; // 32,768 clock ticks
T1CON = 0xC0; // Periodic mode, enable
// timer, 32,768 Hz clock/1
IRQEN |= 0x10; // Enable Timer1 interrupt
// source
PLLKEY1 = 0xAA; // Switch to external crystal
PLLCON = 0x2;
PLLKEY2 = 0x55;
POWKEY1 = 0x1; // Enter nap mode
POWCON0 = 0x73;
POWKEY2 = 0xF4;
In case of crystal loss, the watchdog timer should be used. During
initialization, a test on the RSTSTA can determine if the reset came
from the watchdog timer.
External Clock Selection
To switch to an external clock on P2.0, configure P2.0 in Mode 0.
The external clock can be up to 20.48 MHz, provided that the toler-
ance is 1%. The external clock is divided by 2 internally on the part.
Example source code
T1LD = 0x80;
T1CON = 0xC0;
IRQEN |= 0x10; // Enable Timer1 interrupt
PLLKEY1 = 0xAA; // Switch to external clock
PLLCON = 0x4;
PLLKEY2 = 0x55;
POWKEY1 = 0x1; // Enter NAP mode
POWCON0 = 0x73;
POWKEY2 = 0xF4;
The selection of the clock source is in the PLLCON register. By
default, the part uses the internal oscillator feeding the PLL.
POWER CONTROL SYSTEM
The core clock frequency is changed by writing to the POWCON0
register. This is a key protected register; therefore, Register POWKEY1
and Register POWKEY2 must be written to immediately before and
after configuring the POWCON0 register. The following is a simple
example showing how to configure the core clock for 10.24 MHz:
POWKEY1 = 0x1;
POWCON0 = 0x78; //Set core to max CPU
//speed of 10.24 MHz
POWKEY2 = 0xF4;
A choice of operating modes is available on the ADuC706x. Table 33
describes what part is powered on in the different modes and
indicates the power-up time.
Table 34 gives some typical values for the total current consumption
(analog + digital supply currents) in the different modes, depending
on the clock divider bits. The ADC is turned off. Note that these
values also include the current consumption of the regulator and
other parts on the test board where these values are measured.