Datasheet
Data Sheet ADP2138/ADP2139
Rev. C | Page 11 of 20
THEORY OF OPERATION
09496-027
PWM/
PSM
CONTROL
I
LIMIT
LOW
CURRENT
PSM
COMP
SOFT START
UNDERVOLTAGE
LOCK OUT
THERMAL
SHUTDOWN
DRIVER
AND
ANTISHOOT
THROUGH
OSCILLATOR
PWM
COMP
GM ERROR
AMP
ADP2138
VOUT
MODE
GND
EN
SW
VIN
Figure 33. ADP2138 Functional Block Diagram
The ADP2138 and ADP2139 are step-down dc-to-dc converters
that use a fixed frequency and high speed current-mode archi-
tecture. The high switching frequency and tiny 6-ball WLCSP
package allow for a small step-down dc-to-dc converter solution.
The ADP2138/ADP2139 operate with an input voltage of 2.3 V
to 5.5 V, and regulate an output voltage down to 0.8 V.
CONTROL SCHEME
The ADP2138/ADP2139 operate with a fixed frequency, current-
mode PWM control architecture at medium to high loads for
high efficiency, but shift to a power save mode control scheme
at light loads to lower the regulation power losses. When operating
in PWM mode, the duty cycle of the integrated switches is adjusted
and regulates the output voltage. When operating in power save
mode at light loads, the output voltage is controlled in a hyste-
retic manner, with higher V
OUT
ripple. During part of this time,
the converter is able to stop switching and enters an idle mode,
which improves conversion efficiency. Each ADP2138/ADP2139
has a MODE pin, which determines the operation of the buck
regulator in either PWM mode (when the MODE pin is set
high) or power save mode (when the mode pin is set low).
PWM MODE
In PWM mode, the ADP2138/ADP2139 operate at a fixed
frequency of 3 MHz, set by an internal oscillator. At the start
of each oscillator cycle, the PFET switch is turned on, sending
a positive voltage across the inductor. Current in the inductor
increases until the current sense signal crosses the peak inductor
current threshold that turns off the PFET switch and turns on
the NFET synchronous rectifier. This sends a negative voltage
across the inductor, causing the inductor current to decrease.
The synchronous rectifier stays on for the rest of the cycle.
The ADP2138/ADP2139 regulate the output voltage by adjusting
the peak inductor current threshold.
POWER SAVE MODE
The ADP2138/ADP2139 smoothly transition to the power save
mode of operation when the load current decreases below the
power save mode current threshold. When the ADP2138 and
ADP2139 enter power save mode, an offset is induced in the PWM
regulation level, which makes the output voltage rise. When the
output voltage reaches a level approximately 1.5% above the PWM
regulation level, PWM operation turns off. At this point, both
power switches are off, and the ADP2138/ ADP2139 enter into
idle mode. C
OUT
discharges until V
OUT
falls to the PWM regulation
voltage, at which point the device drives the inductor to cause
V
OUT
to rise again to the upper threshold. This process is repeated
for as long as the load current is below the power save mode
current threshold.
Power Save Mode Current Threshold
The power save mode current threshold is set to 100 mA. The
ADP2138/ADP2139 employ a scheme that enables this current
to remain accurately controlled, independent of V
IN
and V
OUT
levels. This scheme also ensures that there is very little hysteresis
between the power save mode current threshold for entry to and
exit from the power save mode. The power save mode current
threshold is optimized for excellent efficiency across all load
currents.
ENABLE/SHUTDOWN
The ADP2138/ADP2139 start operating with soft start when
the EN pin is toggled from logic low to logic high. Pulling the
EN pin low forces the device into shutdown mode, reducing the
shutdown current to 0.2 μA (typical).