Datasheet

Data Sheet ADE7880
Rev. A | Page 57 of 104
When the ADE7880 analyzes a phase, the following metering
quantities are computed:
Fundamental phase current rms: I
1
Fundamental phase voltage rms: V
1
RMS of up to three harmonics of phase current:
I
x
, I
y
, I
z
, x,y,z=2, 3,…, N
RMS of up to three harmonics of phase voltage:
V
x
, V
y
, V
z
, x,y,z=2, 3,…, N
Fundamental phase active power
P
1
= V
1
I
1
cos(φ
1
− γ
1
)
Fundamental phase reactive power
Q
1
= V
1
I
1
sin(φ
1
− γ
1
)
Fundamental phase apparent power
S
1
= V
1
I
1
Power factor of the fundamental

1
1
11
sgn
S
P
Qpf
Active power of up to three harmonics:
P
x
= V
x
I
x
cos(φ
x
– γ
x
), x=2, 3,…, N
P
y
= V
y
I
y
cos(φ
y
– γ
y
), y=2, 3,…, N
P
z
= V
z
I
z
cos(φ
z
– γ
z
), z=2, 3,…, N
Reactive power of up to three harmonics:
Q
x
= V
x
I
x
sin(φ
x
– γ
x
), x=2, 3,…, N
Q
y
= V
y
I
y
sin(φ
y
– γ
y
), y=2, 3,…, N
Q
z
= V
z
I
z
sin(φ
z
– γ
z
), z=2, 3,…, N
Apparent power of up to three harmonics:
S
x
= V
x
I
x
,
x = 2, 3, …, N
S
y
= V
y
I
y
,
y = 2 , 3, …, N
S
z
= V
z
I
z
, z = 2, 3, …, N
Power factor of up to three harmonics:

x
x
xx
S
P
Qpf sgn
, x = 2, 3,…, N

y
y
yy
S
P
Qpf sgn
, y = 2, 3,…, N

z
z
zz
S
P
Qpf sgn
, z = 2, 3,…, N
Total harmonic distortion of the phase current

1
2
1
2
I
II
THD
I
Total harmonic distortion of the phase voltage

1
2
1
2
V
VV
THD
V
Harmonic distortion of up to three harmonics on the phase
current
1
I
I
HD
x
I
x
, x = 2, 3,…, N
1
I
I
HD
y
I
y
, y = 2, 3,…, N
1
I
I
HD
z
I
z
, z = 2, 3,…, N
Harmonic distortion of up to three harmonics on the phase
voltage:
1
V
V
HD
x
V
x
, x = 2, 3,…, N
1
V
V
HD
y
V
y
, y = 2, 3,…, N
1
V
V
HD
z
V
z
, z = 2, 3,…, N