Datasheet

ADA4941-1
Rev. C | Page 6 of 24
ABSOLUTE MAXIMUM RATINGS
Table 4.
Parameter Rating
Supply Voltage 12 V
Power Dissipation See Figure 3
Storage Temperature Range 65°C to +125°C
Operating Temperature Range 40°C to +85°C
Lead Temperature (Soldering 10 sec) 300°C
Junction Temperature 150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL RESISTANCE
θ
JA
is specified for the worst-case conditions, that is, θ
JA
is
specified for a device soldered in the circuit board with its
exposed paddle soldered to a pad (if applicable) on the PCB
surface that is thermally connected to a copper plane, with zero
airflow.
Table 5. Thermal Resistance
Package Type θ
JA
θ
JC
Unit
8-Lead SOIC on 4-Layer Board 126 28
°C/W
8-Lead LFCSP with EP on 4-Layer Board 83 19
°C/W
Maximum Power Dissipation
The maximum safe power dissipation in the ADA4941-1
package is limited by the associated rise in junction temperature
(T
J
) on the die. At approximately 150°C, which is the glass
transition temperature, the plastic changes its properties. Even
temporarily exceeding this temperature limit can change the
stresses that the package exerts on the die, permanently shifting
the parametric performance of the ADA4941-1. Exceeding a
junction temperature of 150°C for an extended period can
result in changes in the silicon devices potentially causing
failure.
The power dissipated in the package (P
D
) is the sum of the
quiescent power dissipation and the power dissipated in the
package due to the load drive for all outputs. The quiescent
power is the voltage between the supply pins (V
S
) times the
quiescent current (I
S
). The power dissipated due to the load
drive depends upon the particular application. For each output,
the power due to load drive is calculated by multiplying the load
current by the associated voltage drop across the device. The
power dissipated due to all of the loads is equal to the sum of
the power dissipation due to each individual load. RMS voltages
and currents must be used in these calculations.
Airflow increases heat dissipation, effectively reducing θ
JA
. In
addition, more metal directly in contact with the package leads
from metal traces, through holes, ground, and power planes
reduces the θ
JA
. The exposed paddle on the underside of the
package must be soldered to a pad on the PCB surface that is
thermally connected to a copper plane to achieve the specified θ
JA
.
Figure 3 shows the maximum safe power dissipation in the
packages vs. the ambient temperature for the 8-lead SOIC
(126°C/W) and for the 8-lead LFCSP (83°C/W) on a JEDEC
standard 4-layer board. The LFCSP must have its underside
paddle soldered to a pad that is thermally connected to a PCB
plane. θ
JA
values are approximations.
2.5
0
–40 120
AMBIENT TEMPERATURE (°C)
MAXIMUM POWER DISSIPATION (W)
2.0
1.5
1.0
0.5
–20 0 20 40 60 80 100
LFCSP
SOIC
05704-002
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the
human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.