Datasheet

Data Sheet AD9645
Rev. 0 | Page 21 of 36
CLOCK INPUT CONSIDERATIONS
For optimum performance, clock the AD9645 sample clock inputs,
CLK+ and CLK−, with a differential signal. The signal is typically
ac-coupled into the CLK+ and CLK− pins via a transformer or
capacitors. These pins are biased internally (see Figure 44) and
require no external bias.
Clock Input Options
The AD9645 has a flexible clock input structure. The clock input
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless
of the type of signal being used, clock source jitter is of the most
concern, as described in the Jitter Considerations section.
Figure 57 and Figure 58 show two preferred methods for clocking
the AD9645 (at clock rates up to 1 GHz prior to the internal clock
divider). A low jitter clock source is converted from a single-ended
signal to a differential signal using either an RF transformer or an
RF balun.
0.1µF
0.1µF
0.1µF0.1µF
SCHOTTKY
DIODES:
HSMS2822
CLOCK
INPUT
50Ω
100Ω
CLK–
CLK+
ADC
Mini-Circuits
®
ADT1-1WT, 1:1 Z
XFMR
10537-050
Figure 57. Transformer-Coupled Differential Clock (Up to 200 MHz)
0.1µF
0.1µF0.1µF
CLOCK
INPUT
0.1µF
50Ω
CLK–
CLK+
SCHOTTKY
DIODES:
HSMS2822
ADC
10537-051
Figure 58. Balun-Coupled Differential Clock (Up to 1 GHz)
The RF balun configuration is recommended for clock frequencies
between 125 MHz and 1 GHz, and the RF transformer configu-
ration is recommended for clock frequencies from 10 MHz
to 200 MHz. The back-to-back Schottky diodes across the
transformer/balun secondary winding limit clock excursions
into the AD9645 to approximately 0.8 V p-p differential.
This limit helps prevent the large voltage swings of the clock from
feeding through to other portions of the AD9645 while preserving
the fast rise and fall times of the signal that are critical to achieving
low jitter performance. However, the diode capacitance comes into
play at frequencies above 500 MHz. Care must be taken when
choosing the appropriate signal limiting diode.
If a low jitter clock source is not available, another option is to
ac couple a differential PECL signal to the sample clock input
pins, as shown in Figure 59. The AD9510/AD9511/AD9512/
AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer
excellent jitter performance.
100Ω
0.1µF
0.1µF
0.1µF
0.1µF
240Ω240Ω
50kΩ 50kΩ
CLK–
CLK+
CLOCK
INPUT
CLOCK
INPUT
ADC
AD951x
PECL DRIVER
10537-053
Figure 59. Differential PECL Sample Clock (Up to 1 GHz)
A third option is to ac couple a differential LVDS signal to the
sample clock input pins, as shown in Figure 60. The AD9510/
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517
clock drivers offer excellent jitter performance.
100Ω
0.1µF
0.1µF
0.1µF
0.1µF
50kΩ 50kΩ
CLK–
CLK+
ADC
CLOCK
INPUT
CLOCK
INPUT
AD951x
LVDS DRIVER
10537-054
Figure 60. Differential LVDS Sample Clock (Up to 1 GHz)
In some applications, it may be acceptable to drive the sample clock
inputs with a single-ended 1.8 V CMOS signal. In such applica-
tions, drive the CLK+ pin directly from a CMOS gate, and bypass
the CLK− pin to ground with a 0.1 μF capacitor (see Figure 61).
OPTIONAL
100Ω
0.1µF
0.1µF
0.1µF
50Ω
1
1
50Ω RESISTOR IS OPTIONAL.
CLK–
CLK+
ADC
V
CC
1kΩ
1kΩ
CLOCK
INPUT
AD951x
CMOS DRIVER
10537-055
Figure 61. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)
Input Clock Divider
The AD9645 contains an input clock divider that can divide the
input clock by integer values from 1 to 8. To achieve a given sample
rate, the frequency of the externally applied clock must be multi-
plied by the divide value. The increased rate of the external clock
normally results in lower clock jitter, which is beneficial for IF
undersampling applications.