Datasheet
Table Of Contents
- Features
- Applications
- General Description
- Functional Block Diagram
- Revision History
- Specifications
- Power Supply Requirements
- PLL Characteristics
- Clock Inputs
- Clock Outputs
- Timing Characteristics
- Clock Output Additive Phase Noise (Distribution Only; VCO Divider Not Used)
- Clock Output Absolute Phase Noise (Internal VCO Used)
- Clock Output Absolute Time Jitter (Clock Generation Using Internal VCO)
- Clock Output Absolute Time Jitter (Clock Cleanup Using Internal VCO)
- Clock Output Absolute Time Jitter (Clock Generation Using External VCXO)
- Clock Output Additive Time Jitter (VCO Divider Not Used)
- Clock Output Additive Time Jitter (VCO Divider Used)
- Delay Block Additive Time Jitter
- Serial Control Port
- PD, RESET, and SYNC Pins
- LD, STATUS, and REFMON Pins
- Power Dissipation
- Timing Diagrams
- Absolute Maximum Ratings
- Pin Configuration and Function Descriptions
- Typical Performance Characteristics
- Terminology
- Detailed Block Diagram
- Theory of Operation
- Operational Configurations
- High Frequency Clock Distribution—CLK or External VCO > 1600 MHz
- Internal VCO and Clock Distribution
- Clock Distribution or External VCO < 1600 MHz
- Phase-Locked Loop (PLL)
- Configuration of the PLL
- Phase Frequency Detector (PFD)
- Charge Pump (CP)
- On-Chip VCO
- PLL External Loop Filter
- PLL Reference Inputs
- Reference Switchover
- Reference Divider R
- VCXO/VCO Feedback Divider N—P, A, B, R
- Digital Lock Detect (DLD)
- Clock Distribution
- Reset Modes
- Power-Down Modes
- Operational Configurations
- Serial Control Port
- Thermal Performance
- Register Map Overview
- Register Map Descriptions
- Applications Information
- Outline Dimensions

Data Sheet AD9516-1
Rev. C | Page 39 of 80
PROGRAMMABLE
N DELAY
REFIN (REF1)
REFIN (REF2)
CLK
CLK
REF1
REF2
STATUS
STATUS
R
DIVIDER
VCO STATUS
PROGRAMMABLE
R DELAY
REFERENCE
SWITCHOVER
REF_SEL CPRSET
V
CP
V
S GND RSET
DISTRIBUTION
REFERENCE
REFMON
CP
STATUS
LD
P, P + 1
PRESCALER
A/B
COUNTERS
N DIVIDER
BYPASS
LF
LOW DROPOUT
REGULATOR (LDO)
VCO
PHASE
FREQUENCY
DETECTOR
LOCK
DETECT
CHARGE
PUMP
PLL
REFERENCE
HOLD
01
0
1
DIVIDE BY
2, 3, 4, 5, OR 6
06420-070
Figure 54. Reference and VCO Status Monitors
VCO Calibration
The AD9516 on-chip VCO must be calibrated to ensure proper
operation over process and temperature. The VCO calibration
is controlled by a calibration controller running off of a divided
REFIN clock. The calibration requires that the PLL be set up
properly to lock the PLL loop and that the REFIN clock be present.
During the first initialization after a power-up or a reset of the
AD9516, a VCO calibration sequence is initiated by setting
Register 0x018[0] = 1b. This can be done as part of the initial
setup, before executing update registers (Register 0x232[0] = 1b).
Subsequent to the initial setup, a VCO calibration sequence is
initiated by resetting Register 0x018[0] = 0b, executing an update
registers operation, setting Register 0x018[0] = 1b, and executing
another update registers operation. A readback bit, Bit 6 in
Register 0x01F, indicates when a VCO calibration is finished
by returning a logic true (that is, 1b).
The sequence of operations for the VCO calibration is as follows:
Program the PLL registers to the proper values for the PLL
loop. Note that that automatic holdover mode must be
disabled, and the VCO divider must not be set to “Static.”
Ensure that the input reference signal is present.
For the initial setting of the registers after a power-up or reset,
initiate VCO calibration by setting Register 0x018[0] = 1b.
Subsequently, whenever a calibration is desired, set
Register 0x018[0] = 0b, update registers; and then set
Register 0x018[0] = 1b, update registers.
A SYNC operation is initiated internally, causing the
outputs to go to a static state determined by normal SYNC
function operation.
VCO calibrates to the desired setting for the requested
VCO frequency.
Internally, the SYNC signal is released, allowing outputs to
continue clocking.
PLL loop is closed.
PLL locks.
A sync is executed during the VCO calibration; therefore, the
outputs of the AD9516 are held static during the calibration,
which prevents unwanted frequencies from being produced.
However, at the end of a VCO calibration, the outputs may
resume clocking before the PLL loop is completely settled.
The VCO calibration clock divider is set as shown in Table 54
(Register 0x018[2:1]).
The calibration divider divides the PFD frequency (reference
frequency divided by R) down to the calibration clock. The
calibration occurs at the PFD frequency divided by the
calibration divider setting. Lower VCO calibration clock
frequencies result in longer times for a calibration to be
completed.
The VCO calibration clock frequency is given by
f
CAL_CLOCK
= f
REFIN
/(R × cal_div)
where:
f
REFIN
is the frequency of the REFIN signal.
R is the value of the R divider.
cal_div is the division set for the VCO calibration divider
(Register 0x018[2:1]).
The VCO calibration takes 4400 calibration clock cycles.
Therefore, the VCO calibration time in PLL reference clock
cycles is given by
Time to Calibrate VCO =
4400 × R × cal_div PLL Reference Clock Cycles
Table 29. Example Time to Complete a VCO Calibration
with Different f
REFIN
Frequencies
f
REFIN
(MHz) R Divider PFD Time to Calibrate VCO
100 1 100 MHz 88 μs
10 10 1 MHz 8.8 ms
10 100 100 kHz 88 ms