Datasheet

AD8106/AD8107
Rev. 0 | Page 21 of 28
EVALUATION BOARD
w = 0.008"
(0.2mm)
a = 0.008"
(0.2mm)
b = 0.024"
(0.6mm)
h = 0.011325"
(0.288mm)
t = 0.00135" (0.0343mm)
COMPONENT LAYER
SIGNAL ROUTING LAYE
R
POWER PLANE LAYER
BOTTOM LAYER
05774-049
A 4-layer evaluation board is available for the AD8106/
AD8107. The same board and external components are used for
each device. The only difference is the device itself, which offers
a selection of a gain of unity or a gain of two through the analog
channels. This board has been carefully laid out and tested to
demonstrate the specified high speed performance of the
device.
Figure 49 shows the schematic of the evaluation board.
Figure 50 shows the component side silkscreen. The layout of
the board’s four layers are given in:
Figure 48. Cross Section of Input and Output Traces
The board has 24 BNC-type connectors: 16 inputs and 8 outputs.
The connectors are arranged in a crescent around the device.
As shown in
Component Layer (see
Figure 51)
Figure 53, this results in all 16 input signal traces
and all 8 signal output traces having the same length. This is
useful in tests such as all-hostile crosstalk where the phase
relationship and delay between signals needs to be maintained
from input to output.
Signal Routing Layer (see
Figure 52)
Power Layer (see
Figure 53)
Bottom Layer (see
Figure 54)
The evaluation board package includes the following:
The three power supply pins, AVCC, DVCC, and AVEE, should
be connected to good quality, low noise, ±5 V supplies. While
the same ±5 V power supplies are used for analog and digital,
separate cables should be run for the power supply to the
evaluation board’s analog and digital power supply pins.
Fully populated board with BNC-type connectors.
Windows®-based software for controlling the board from a
PC via the printer port.
As a general rule, each power supply pin (or group of adjacent
power supply pins) should be locally decoupled with a 0.01 μF
capacitor. If there is a space constraint, decouple analog power
supply pins before digital power supply pins. A 0.1 μF capacitor
located reasonably close to the pins can be used to decouple a
number of power supply pins. Finally, a 10 μF capacitor should
be used to decouple power supplies as they come on to the board.
Custom cable to connect evaluation board to PC.
Disk containing Gerber files of board layout.
Optimized for video applications, all signal inputs and outputs
are terminated with 75 Ω resistors. Stripline techniques are used
to achieve a characteristic impedance on the signal input and
output lines, also of 75 Ω.
Figure 48 shows a cross section of one
of the input or output tracks along with the arrangement of the
PCB layers. Note that unused regions of the four layers are filled
up with ground planes. As a result, the input and output traces,
in addition to having controlled impedances, are well shielded.