Datasheet

Data Sheet AD7980
Rev. C | Page 13 of 28
THEORY OF OPERATION
06392-011
COMP
SWITCHES CONTROL
BUSY
OUTPUT CODE
CNV
CONTROL
LOGIC
SW+LSB
SW+LSB
IN+
REF
GND
IN–
MSB
MSB
C
C
4C 2C16,384C32,768C
CC4C 2C16,384C32,768C
Figure 25. ADC Simplified Schematic
CIRCUIT INFORMATION
The AD7980 is a fast, low power, single-supply, precise 16-bit
ADC that uses a successive approximation architecture.
The AD7980 is capable of converting 1,000,000 samples per
second (1 MSPS) and powers down between conversions. When
operating at 10 kSPS, for example, it consumes 70 µW typically,
ideal for battery-powered applications.
The AD7980 provides the user with on-chip track-and-hold
and does not exhibit any pipeline delay or latency, making it
ideal for multiple multiplexed channel applications.
The AD7980 can be interfaced to any 1.8 V to 5 V digital logic
family. It is housed in a 10-lead MSOP or a tiny 10-lead QFN
(LFCSP) that combines space savings and allows flexible
configurations.
It is pin-for-pin compatible with the 18-bit AD7982.
CONVERTER OPERATION
The AD7980 is a successive approximation ADC based on a
charge redistribution DAC. Figure 25 shows the simplified
schematic of the ADC. The capacitive DAC consists of two
identical arrays of 16 binary weighted capacitors, which are
connected to the two comparator inputs.
During the acquisition phase, terminals of the array tied to the
comparator’s input are connected to GND via SW+ and SW−.
All independent switches are connected to the analog inputs.
Therefore, the capacitor arrays are used as sampling capacitors
and acquire the analog signal on the IN+ and IN− inputs. When
the acquisition phase is completed and the CNV input goes
high, a conversion phase is initiated. When the conversion
phase begins, SW+ and SW− are opened first. The two capacitor
arrays are then disconnected from the inputs and connected to
the GND input. Therefore, the differential voltage between the
inputs IN+ and IN− captured at the end of the acquisition phase
are applied to the comparator inputs, causing the comparator to
become unbalanced. By switching each element of the capacitor
array between GND and REF, the comparator input varies by
binary weighted voltage steps (V
REF
/2, V
REF
/4 V
REF
/65,536).
The control logic toggles these switches, starting with the MSB,
to bring the comparator back into a balanced condition. After
the completion of this process, the part returns to the acquisition
phase and the control logic generates the ADC output code and
a busy signal indicator.
Because the AD7980 has an on-board conversion clock, the
serial clock, SCK, is not required for the conversion process.