Datasheet
Data Sheet AD5686/AD5684
Rev. A | Page 21 of 28
READBACK OPERATION
Readback mode is invoked through a software executable
readback command. If the SDO output is disabled via the daisy-
chain mode disable bit in the control register, it is automatically
enabled for the duration of the read operation, after which it is
disabled again. Command 1001 is reserved for the readback
function. This command, in association with selecting one
of the address bits, DAC A to DAC D, selects the register to
read. Note that only one DAC register can be selected during
readback. The remaining three address bits must be set to
Logic 0. The remaining data bits in the write sequence are
don’t care bits. If more than one or no bits are selected, DAC
Channel A is read back by default. During the next SPI write,
the data appearing on the SDO output contains the data from
the previously addressed register.
For example, to read back the DAC register for Channel A, the
following sequence should be implemented:
1. Write 0x900000 to the AD5686/AD5684 input register.
This configures the part for read mode with the DAC
register of Channel A selected. Note that all data bits,
DB15 to DB0, are don’t care bits.
2. Follow this with a second write, a NOP condition,
0x000000. During this write, the data from the register
is clocked out on the SDO line. DB23 to DB20 contain
undefined data, and the last 16 bits contain the DB19 to
DB4 DAC register contents.
POWER-DOWN OPERATION
The AD5686/AD5684 provide three separate power-down
modes (see Table 11). Command 0100 is designated for the power-
down function (see Table 8). These power-down modes are
software programmable by setting eight bits, Bit DB7 to Bit DB0,
in the input shift register. Two bits are associated with each DAC
channel. Table 11 shows how the state of the two bits corresponds
to the mode of operation of the device.
Table 11. Modes of Operation
Operating Mode PDx1 PDx0
Normal Operation 0 0
Power-Down Modes
1 kΩ to GND 0 1
100 kΩ to GND 1 0
Three-State 1 1
Any or all DACs (DAC A to DAC D) can be powered down
to the selected mode by setting the corresponding bits. See
Table 12 for the contents of the input shift register during the
power-down/power-up operation.
When both Bit PDx1 and Bit PDx0 (where x is the channel
selected) in the input shift register are set to 0, the parts work
normally with their normal power consumption of 0.59 mA at
5 V. However, for the three power-down modes, the supply
current falls to 4 μA at 5 V. Not only does the supply current
fall, but the output stage is also internally switched from the
output of the amplifier to a resistor network of known values.
This has the advantage that the output impedance of the part is
known while the part is in power-down mode. There are three
different power-down options (see Table 11). The output is
connected internally to GND through either a 1 kΩ or a 100 kΩ
resistor, or it is left open-circuited (three-state). The output stage
is illustrated in Figure 41.
Figure 41. Output Stage During Power-Down
The bias generator, output amplifier, resistor string, and other
associated linear circuitry are shut down when the power-down
mode is activated. However, the contents of the DAC registers
are unaffected when in power-down. The DAC registers can be
updated while the device is in power-down mode. The time
required to exit power-down is typically 4.5 µs for V
DD
= 5 V.
Table 12. 24-Bit Input Shift Register Contents for Power-Down/Power-Up Operation
1
DB23 DB22 DB21 DB20 DB19 to DB16
DB15
to
DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1
DB0
(LSB)
0 1 0 0 X X PDD1 PDD0 PDC1 PDC0 PDB1 PDB0 PDA1 PDA0
Command bits (C3 to C0) Address bits
(don’t care)
Power-Down
Select DAC D
Power-Down
Select DAC C
Power-Down
Select DAC B
Power-Down
Select DAC A
1
X = don’t care.
RESISTOR
NETWORK
V
OUT
X
DAC
POWER-DOWN
CIRCUITRY
AMPLIFIER
10797-058